机器学习每周挑战——水质检测

这是一篇关于机器学习算法的文章,数据来自于kaggle社区,算法用到了随机森林。 

这是数据的截图 

实现方法 

1.导入所需要的库

# 导入数据处理所需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import font_manager
from sklearn.model_selection import train_test_split,cross_val_score  
from sklearn.metrics import confusion_matrix,roc_curve,roc_auc_score
from sklearn.metrics import classification_report,r2_score
from sklearn.ensemble import RandomForestClassifier

train_test_split函数用于将数据集划分为训练集和测试集,以便在机器学习任务中进行模型的训练和评估。它接受输入数据和标签,并返回划分后的训练集和测试集。 cross_val_score函数用于执行交叉验证,评估模型的性能。它接受一个分类器对象、输入数据和标签,并返回每次交叉验证的得分列表。

2.导入数据


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值