这是一篇关于机器学习算法的文章,数据来自于kaggle社区,算法用到了随机森林。
这是数据的截图
实现方法
1.导入所需要的库
# 导入数据处理所需要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import font_manager
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.metrics import confusion_matrix,roc_curve,roc_auc_score
from sklearn.metrics import classification_report,r2_score
from sklearn.ensemble import RandomForestClassifier
train_test_split函数用于将数据集划分为训练集和测试集,以便在机器学习任务中进行模型的训练和评估。它接受输入数据和标签,并返回划分后的训练集和测试集。 cross_val_score函数用于执行交叉验证,评估模型的性能。它接受一个分类器对象、输入数据和标签,并返回每次交叉验证的得分列表。
2.导入数据