基于机器学习的淡水质量预测

本文介绍了如何使用英特尔工具包处理水质数据,包括数据预处理(one-hot编码、缺失值处理、特征选择),特征工程(对数变换和特征选择),并对比了Logistic回归和XGBoost模型在解决二分类问题上的表现,发现XGBoost在处理不平衡数据时效果更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、背景描述

二、数据处理

三、特征工程

四、模型选择

五、评估方案与小结


一、背景描述

1、背景描述

淡水是我们最重要和最稀缺的自然资源之一,仅占地球总水量的 3%。它几乎触及我们日常生活的方方面面,从饮用、游泳和沐浴到生产食物、电力和我们每天使用的产品。获得安全卫生的供水不仅对人类生活至关重要,而且对正在遭受干旱、污染和气温升高影响的周边生态系统的生存也至关重要。

通过参考英特尔的类似实现方案,预测淡水是否可以安全饮用和被依赖淡水的生态系统所使用,从而可以帮助全球水安全和环境可持续性发展。这里分类准确度和推理时间将作为评分的主要依据。

2、数据集:

你可以在此处下载数据集要求。

3、需求:

需要使用 英特尔® ONEAPI AI分析工具包

4、参考资料:

欢迎参考英特尔提供的类似实现方案

二、数据处理

1、数据初步展示

该数据集

Data shape: (5956842, 24)

18个特征(除去index),目标属性是Target,只有0和1两个值,因此此问题是二分类问题。经过探究后,得知18个特征中,

离散特征: ['Color', 'Source', 'Month', 'Day', 'Time of Day', 'Target']
连续特征: [ 'pH', 'Iron', 'Nitrate', 'Chloride', 'Lead', 'Zinc', 'Turbidity', 'Fluoride', 'Copper', 'Odor', 'Sulfate', 'Conductivity', 'Chlorine', 'Manganese', 'Total Dissolved Solids', 'Water Temperature', 'Air Temperature']

2、离散特征one-hot编码与数据的映射

# 使用独热编码处理 'Color' 和 'Source' 特征
one_hot_encoded_color = pd.get_dummies(data['Color'], prefix='Color')
one_hot_encoded_source = pd.get_dummies(data['Source'], prefix='Source')

# 将独热编码特征列与原始数据合并
data = pd.concat([data, one_hot_encoded_color, one_hot_encoded_source], axis=1)

# 删除原始的 'Color' 和 'Source' 特征列
data.drop(['Color', 'Source'], axis=1, inplace=True)
# 将月份映射至数字1~12
months = ["January", "February", "March&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值