数学建模学习(100):交通运输问题建模

本文探讨了运输问题的线性规划模型,旨在最小化产品从多个工厂到不同目的地的运输成本。介绍了具体案例,涉及3个工厂、4个仓库的供需情况和单位运输成本,并详细阐述了建模过程,包括供应和需求约束,同时强调了问题的平衡条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运输问题是一种特殊类型的线性规划问题,其目标是最小化将产品从多个来源分发到多个目的地的成本。

运输问题处理一类特殊的线性规划问题,其目标是以最低的总成本将在多个工厂(原产地)生产的同质产品运输到多个不同的目的地。问题陈述中给出了始发地可用的总供应量和目的地的总需求量。还给出了将单位货物从已知来源地运送到已知目的地的成本。我们的目标是确定导致总运输成本最低的最佳分配。

未经允许不得转载。CSDN/知乎:川川菜鸟

一、题目

一家公司有 3 个工厂 - A、E 和 K。在 B、C、D 和 M 有四个主要仓库。A、E、K 的平均日产品供应分别为 30、40 和 50 个单位。该产品在 B、C、D 和 M 的平均日需求量分别为 35、28、32、25 单位。从每个工厂到每个仓库的每单位产品的运输成本如下:
在这里插入图片描述
问题是确定最小化总运输成本的路线计划。

二、建模

另i=(1,2,3)表示三个工厂,j=(1,2,3,4)表示四个仓库。如果在特定的解决方案中某个单元格的 xij 值缺失,这意味着工厂和仓库

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值