如何正确使用ChatGPT做数学建模比赛

引言

数学建模竞赛是将数学理论应用于解决现实世界问题的一项重要赛事。在这类比赛中,学生团队通常需要在有限时间内完成从问题分析模型构建算法实现结果分析论文撰写的一整套流程。这对参赛者的知识广度、实践能力和协作水平都是极大挑战。以常见的全国大学生数学建模竞赛、美赛(MCM/ICM)等为例,参赛者往往面对开放性问题,需要自行查阅资料、设计创新模型并完成万字左右的论文,时间压力和工作强度都非常大。如何在短时间内高效地获取灵感、验证思路并产出高质量成果,成为每支参赛队伍关注的焦点。

近年兴起的对话式人工智能模型——ChatGPT,为数学建模竞赛带来了全新的辅助手段。ChatGPT由OpenAI开发,于2022年问世后迅速风靡全球,其在短短两个月内月活跃用户突破1亿,成为史上用户增长最快的应用 (史上增速最快消费级应用,ChatGPT月活用户突破1亿_澎湃号·湃客_澎湃新闻-The Paper) (史上增速最快消费级应用,ChatGPT月活用户突破1亿_澎湃号·湃客_澎湃新闻-The Paper)。这一强大的大语言模型拥有海量的训练语料,具备了上下文对话知识问答代码生成语言翻译等惊人能力。许多使用者发现,ChatGPT几乎是一个“全能助手”,不仅能聊天对答,还可以编写代码、调试程序、撰写文章,甚至生成神经网络模型 (史上增速最快消费级应用,ChatGPT月活用户突破1亿_澎湃号·湃客_澎湃新闻-The Paper)。这样的能力正好契合了数学建模比赛的诸多需求:我们可以设想,在方案构思阶段,ChatGPT可以帮我们头脑风暴模型思路;在编程实现阶段,ChatGPT能快速给出代码片段、调试错误;在数据处理阶段,它可以提供分析思路和可视化建议;在结果解释阶段,它能以清晰语言阐释模型发现;在论文写作阶段,它甚至可以润色语言、生成LaTeX公式。可以说,ChatGPT有潜力成为数学建模团队的“第四位队友”,帮助我们高效协同完成比赛任务。

当然,ChatGPT并非万能。在竞赛中应用它,需要了解其优势与局限,掌握正确的使用方法,才能事半功倍。本文旨在面向参赛学生和队伍,系统介绍如何正确使用ChatGPT参与数学建模比赛。文章将首先剖析ChatGPT在数据分析、算法设计、编程和写作等方面的能力与局限,然后给出使用指南和提示词技巧。接下来通过两个典型案例(预测类问题优化类问题)演示在各个环节与ChatGPT协同工作的流程,并提供实际提示词设计和对话示例。随后,讨论常见问题及解决建议,以及ChatGPT在团队协作中的应用。最后强调在使用ChatGPT时需要遵守的伦理与规范,例如如何保持原创性和学术诚信。希望本文能够为数学建模参赛者提供有价值的参考,让大家善用这一新兴AI工具,在比赛中如虎添翼。

ChatGPT能力剖析

ChatGPT作为当今领先的通用大语言模型,在数学建模相关任务上展现出多方面的能力。理解这些能力的边界对于有效利用ChatGPT非常关键。本节将从数据分析算法设计Python编程辅助公式与文案生成等角度,对ChatGPT的具体能力及可能的局限性进行剖析。

1. 数据分析与处理能力: ChatGPT擅长从文本中提取和归纳信息,对于结构化的数据分析也有所涉及。给定数据的统计描述或部分样本,ChatGPT可以回答诸如“数据呈现哪些趋势和特征”这类问题。例如,如果提供某城市交通流量的时间序列数据摘要,ChatGPT能够指出是否存在季节周期、增长趋势或异常点,并可能建议针对性的数据预处理方法(如缺失值填补、异常值剔除)。ChatGPT还能基于已有数据分布,推测适用的统计模型或检验方法。然而需要注意,ChatGPT对数值计算和精确统计分析并不总是可靠。它没有内置计算器,其分析更多是基于模式识别和训练知识。例如,对于给定数据它不会像专用统计软件那样计算精确的均值或方差,除非这些值隐含在提供的描述中。因此,在需要精确计算的任务上,ChatGPT的回答只能作为参考,重要的统计结果仍需由我们用编程工具实际计算验证。总的来说,ChatGPT在定性分析方案建议上很有帮助,但在定量计算结果准确性上存在局限,需谨慎对待。

2. 模型与算法设计能力: 在数学建模中,选择合适的模型和算法是核心步骤之一。ChatGPT在这方面展现出惊人的知识储备和建议能力。由于训练自海量文本,它了解各种经典模型(线性回归、时间序列ARIMA、支持向量机、神经网络等等)和算法(动态规划、遗传算法、模拟退火、线性规划等)的原理和适用场景。当我们描述一个问题时,ChatGPT能够综合分析问题特征并给出模型设计思路。例如,对于预测类的问题,它可能会建议使用时间序列模型(如ARIMA或LSTM)或者回归分析,并阐明选择该模型的理由;对于优化决策类问题,它能够提出将问题表述为数学规划(线性或非线性规划)或者采用启发式算法(遗传算法、蚁群算法等)来求解 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客) (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。ChatGPT还能进一步提供模型的公式推导框架、算法流程步骤等细节。然而,值得注意的是,ChatGPT的建议基于通用知识,缺少针对具体数据和实际约束的验证。它可能不了解最新的或高度定制化的模型。此外,有时ChatGPT给出的模型思路可能过于理想化,忽略了实现难度或计算成本。因此,队伍在接受其建议时要结合自身判断进行筛选。总体而言,ChatGPT在模型脑暴阶段非常有价值,可以作为“顾问”提供多种可能方向,但最终方案的可行性和有效性仍需由人来评估确认。

3. Python编程辅助能力: ChatGPT的一大亮点功能是在编程上的辅助能力。对于数学建模选手来说,编写代码实现模型是必不可少的环节,而ChatGPT恰好能够充当**“编程导师”“自动补全工具”的角色 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。首先,它精通主流编程语言(Python、R、MATLAB等)的语法和大量常用库的用法。例如,在Python中,它熟悉pandas用于数据处理、statsmodels和scikit-learn用于建模,matplotlib用于绘图等等。如果请求“请用Python实现某某算法”,ChatGPT往往能直接产出相当完整的代码框架。更惊人的是,它还能根据错误提示进行调试:如果我们运行ChatGPT给出的代码遇到报错,再将错误信息反馈给ChatGPT,它通常可以分析原因并给出修改建议。例如,ChatGPT可以快速纠正拼写错误的函数名、调整数据结构不匹配的部分,或者补充遗漏的步骤。这样的交互式调试极大地方便了编程过程。此外,ChatGPT还能解释代码**——当队友写出复杂代码时,可以请ChatGPT逐步解释每段代码的作用,确保团队对实现细节达成共识。需要指出的是,虽然ChatGPT编程速度快,但其生成的代码不保证百分之百正确。正如一篇研究指出的那样,有时ChatGPT的代码表面上看似合理,但可能隐藏细微错误,只有专家才能察觉 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。因此,我们在使用ChatGPT生成的代码时,一定要经过充分测试。例如,对照小型数据集检验结果是否正确,或者审查关键计算模块的正确性。另外,ChatGPT对某些最新库或版本变化可能不了解(其知识截至2021年),可能提供过时的API用法,这也需要留意并自行更新。综上,ChatGPT在编码环节是一个高效的助手,能够显著提升编程效率 (史上增速最快消费级应用,ChatGPT月活用户突破1亿_澎湃号·湃客_澎湃新闻-The Paper),但人类应担当最终的代码审查者角色,对其产出进行验证调整 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。

4. LaTeX公式与论文撰写能力: 数学建模论文往往需要包含大量公式推导和专业表述。ChatGPT在自然语言生成方面的能力,使其在辅助撰写技术报告方面也大有可为。首先,ChatGPT可以根据要求输出LaTeX格式的公式。例如,如果提示“请给出线性回归的损失函数公式并使用LaTeX格式”,它会回答类似:“ L ( β ) = ∑ i = 1 n ( y i − β 0 − β 1 x i 1 − . . . − β p x i p ) 2 L(\beta) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_{i1} - ... - \beta_p x_{ip})^2 L(β)=i=1n(yiβ0β1xi1...βpxip)2”,直接产出带有数学符号的LaTeX代码。这对于撰写论文时嵌入标准数学公式非常便利。事实上,有资深数学家也尝试用ChatGPT来生成带LaTeX格式的代码片段,效果相当好 (陶哲轩用大模型辅助解决数学问题:生成代码、编辑LaTeX公式都很好用 | 机器之心)。除了公式,ChatGPT还能写作流畅的学术段落。如果提供论文提纲或要点,它可以根据学术论文的风格要求展开成段落,包括引言、方法、结果分析等内容。例如,它可以根据模型和结果总结,自动生成摘要或者结论段落的初稿。另外,在语言润色上,ChatGPT非常擅长修改语句使其更通顺专业。当我们完成论文初稿后,可以请ChatGPT提出修改建议或优化措辞,从而提升论文的可读性和规范性。需要强调的是,ChatGPT生成的论文内容必须经过作者仔细审阅。因为它可能编造引用或数据,这在学术写作中是绝对不被允许的。如果让它添加参考文献列表,往往会捏造看似真实却不存在的文献。因此,利用ChatGPT写作时,我们应主要关注其表达上的帮助,而不能不经核实就采信其给出的论据或文献。正确的用法是:让它润色语言或提供行文建议,而专业性的内容和真实性检查仍由作者负责。

5. 局限性概述: 综合而言,ChatGPT在数学建模的文字处理和已有知识应用方面表现突出,但在需要创造全新知识、精确计算或严格逻辑推导的场景下有明显局限 (Deep dive into the mathematical functions of ChatGPT | AI-SCHOLAR | AI: (Artificial Intelligence) Articles and technical information media) (Deep dive into the mathematical functions of ChatGPT | AI-SCHOLAR | AI: (Artificial Intelligence) Articles and technical information media)。它不擅长处理全新的研究型问题——如果问题超出训练资料,它可能无法给出有意义的答案。它的推理有时不可靠,尤其在复杂数学推导上会犯错误。此外,ChatGPT的输出具有一定随机性,不同提问方式可能得到不同答复 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。这意味着重复询问同一问题,模型可能给出风格或细节上略有差异的结果,稳定性欠佳。最后,ChatGPT作为语言模型,对上下文的理解停留在语言层面,并没有真正的“理解”或“意识”。因此,对于建模中需要深刻洞察力的问题(比如模型假设的合理性,结果的物理意义),ChatGPT提供的仅是参考,而不能盲目依赖。了解这些局限有助于我们合理定位ChatGPT的作用:它是功能强大的助手,但不是可以完全取代人脑的自动建模机器。只有将其长处与人的智慧相结合,才能在数学建模中取得最优效果。

使用指南

掌握了ChatGPT的能力特点后,在实际使用中还需要讲究策略。为充分发挥ChatGPT的作用,对话方式提示词设计(Prompt Engineering)非常重要。本节将给出如何与ChatGPT进行高效交互的指南,包括设置清晰的提示多轮对话策略以及验证和微调输出的方法。

提示词设计原则

与ChatGPT交互的第一步是编写恰当的提示(prompt)。提示的质量直接决定了ChatGPT输出的相关性和准确性。以下是设计提示词的一些基本原则:

  • 明确具体:提示中应清晰说明你想让ChatGPT做什么任务,以及相关的背景信息。例如,不要仅问“这个数据应该用什么模型?”,可以改为“我们有一组城市月度交通流量数据,需要预测未来5年的趋势。请推荐合适的时间序列预测模型并解释原因。”提供越具体的背景和要求,ChatGPT的回答会越有针对性。过于笼统的问题往往得到泛泛的回答。

  • 分解复杂任务:如果问题涉及多个步骤,建议将任务拆解为多轮对话,每次专注一个方面。 (ChatGPT: Your Personal Python Coding Mentor – Real Python)研究表明,当提示太宽泛时,ChatGPT更容易给出不正确或不相关的信息;相反,逐步提问、逐步细化,可以显著提高回答的准确度 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。例如,对于“构建预测模型并编程实现”这样复杂的请求,可以先问“应该选择什么模型”,确认后再要求“给出该模型的实现代码示例”。逐步细化能让ChatGPT聚焦当前子任务,从而提高质量。

  • 指定角色和风格:可以在提示中让ChatGPT扮演某个专业身份,以获得更专业的回答。例如:“你是一名资深数据科学家…”或“作为一位数学建模竞赛导师,…”这样的开头,能引导ChatGPT以相应口吻和专业度来回答。这种角色扮演技巧有时能提高回答的可信度和严谨性。此外,在需要特定输出格式时(如LaTeX公式、代码、表格),也应在提示中明确要求,例如“请以markdown表格形式给出…”。ChatGPT可以识别这些要求并按照所指定的格式组织答案 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。

  • 提供示例:如果希望ChatGPT按照特定形式回答,可以先在提示中给一个范例。比如在提示里先展示一个你期望的结果格式,然后要求它“仿照以上格式完成…”。模型会根据示例学样输出。这对让ChatGPT生成表格、列表等非常有用。例如,要它列出算法步骤,可以先示范“1. 数据读入;2. 数据清洗;…”然后让它续写后续步骤。

  • 控制长度:对回答长度有要求也可以在提示中声明,如“请将答案控制在200字以内”或“简要给出关键步骤,不用展开证明”。这样可以避免得到冗长的叙述而浪费阅读时间。当然,过度压缩可能导致信息不足,长度要求需要权衡。

下面给出一个提示优化的示例来说明以上原则:

不良提示:“有什么算法可以优化公交路线?” (问题太泛,缺少背景)

优化后提示:“我们正在研究一个公交路线优化问题:已知10个站点的位置和乘客需求,想要规划一条线路使总行驶距离最短且满足每站乘客上下车需求。请问应如何建立数学模型并选择求解算法? (增加了背景信息和具体要求)

可以预见,优化后的提示将使ChatGPT聚焦于路径规划优化算法,可能建议旅行商问题建模并使用遗传算法或线性规划等;而模糊的提示则可能得到各种无关算法的空泛介绍 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。通过精心设计提示词,用户在对话中拥有很大的主动权去引导ChatGPT产出更符合期望的答复。

多轮对话与迭代优化

与ChatGPT的交互通常是多轮对话。学会在对话中引导和迭代,可以不断逼近满意的答案。

  • 逐步深入:初始回答有时比较概括,可以根据需要让ChatGPT进一步展开某点。例如ChatGPT建议使用“ARIMA模型”但解释不多,我们可以追问“请具体说明为什么ARIMA适合这个问题,以及应如何确定其阶数”。多轮追问能获取更丰富的信息。ChatGPT不会嫌你问得多,一步步澄清反而能让最终答案更精准。

  • 纠正和引导:如果ChatGPT的回答有错误或不满意之处,可以在下一轮直接指出并要求修改。比如:“你给的代码运行出错,提示没有名为‘tsa’的模块”或者“你的模型忽略了重要约束X,请考虑加入约束X重新给出方案”。ChatGPT能接受这样的反馈并尝试改进答案。这种方式相当于教会AI纠错,往往比从头重新提问更有效,因为它保留了上下文知道之前自己的回答内容。

  • 切换话题开新对话:当需要咨询全新问题,最好开启一个新会话(chat)。因为上下文会影响答案,长对话历史可能让ChatGPT混淆不同问题。新的独立问题用新对话,可以确保模型不被前文干扰。

  • 使用提示语:“让我们一步步思考”(Let’s think step by step)是一个被实践证明有效的提示技巧 ([PDF] 如何向ChatGPT 提问以获得高质量答案:提示技巧工程完全指南)。当遇到复杂推理问题时,在提问末尾加上这句话,ChatGPT往往会按步骤给出详细的思考过程,有助于寻找其中的漏洞或让我们更好地理解逻辑。同样地,“请先列出解题思路,再给出答案”这类提示也能让输出更有条理。

  • 礼貌和正向引导:有研究表明,在提示词中保持礼貌和使用正向词汇,有时可以提高模型响应的质量 (ChatGPT 提示词十级技巧:从新手到专家[译])。比如使用“请您…”、“谢谢”并非必要但也无妨。在ChatGPT出现偏题或误解时,可以耐心引导,而非直接训斥,这样它更可能配合调整方向。

验证与微调输出

获得ChatGPT的回答后,并不意味着工作结束。正如前文强调的,我们应始终验证其输出的正确性,必要时进行微调。

  • 独立验证关键结果:对于ChatGPT给出的数据分析结论、计算结果、模型性能等,务必使用独立的方法验证。例如,ChatGPT建议某模型的参数值,可以自行编程尝试这些参数是否有效;ChatGPT给出某统计值,最好重新计算确认。又如ChatGPT生成了一段优化算法代码,可以用小规模数据跑一跑,看是否得到预期结果。验证可以通过手算、编程、或查阅权威资料等方式进行。

  • 事实核查:如果ChatGPT在回答中涉及事实性陈述(如某算法发表年份、某公式来源),有可能存在错误或“幻觉”编造。应针对重要事实查证。比如,它引用了一句定理或他人工作的结论,最好找原始出处比对。如果比赛允许上网查资料,这一步骤非常必要,不能完全依赖ChatGPT的二手信息。

  • 输出微调:当ChatGPT给出的内容基本正确但表达不符合要求时,我们可以自行或要求它微调。例如回答内容冗长,可以要求“请总结以上内容要点”;如果措辞不够正式,可以说“请用更加学术的语气表述”。ChatGPT擅长在保持原意的基础上改变表述风格,所以利用这一点可以反复打磨输出,使之更符合期望。

  • 多模型交叉对比:在重要决策上,可以尝试用不同提示或不同AI模型询问同一问题,将ChatGPT的答案与其他来源对比。如果多个独立来源都得出类似结论,那么可信度更高;若差异很大,需要我们仔细分析其原因并做出判断。

最后,善用重置重新生成功能。当ChatGPT输出明显跑题或无关时,不妨点击“重新生成答案”或者换个表达重新提问,有时会出现截然不同且更好的结果 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。由于ChatGPT的输出并非固定不变,多尝试几次可能柳暗花明。总之,始终保持对输出的审慎态度,将ChatGPT视为辅助手段而非真理来源,才能在使用中立于不败之地。

接下来,我们通过具体案例演示如何将上述指南应用于实际的数学建模比赛问题中。每个案例将涵盖从问题提出到模型实现、结果分析和论文撰写的完整流程,展示如何在各环节巧妙地利用ChatGPT提高效率和质量。

案例一(预测类问题)

问题背景: 假设我们参加数学建模比赛,遇到一个预测类题目:“预测未来5年某城市的交通流量变化趋势”。题目提供了该城市过去10年的月度交通流量数据,并要求我们建立模型预测未来60个月的交通流量。这样的问题在比赛中相当典型,需要我们处理时间序列数据,考虑趋势和季节性因素,并给出合理的预测区间和结果解释。解决步骤包括:理解并拆解问题、对数据进行预处理、选择合适的时间序列模型、编写代码训练模型和生成预测、验证模型效果、解释预测结果,最后撰写论文报告方法和结论。下面我们展示如何在每一步都借助ChatGPT的力量高效完成任务。

1. 问题拆解与分析

拿到题目后,首先要充分理解问题需求和难点。我们可以让ChatGPT充当咨询助手,通过对话来梳理题目背景明确建模任务

提示示例:
用户:“我们有某城市过去10年的月度交通流量数据,需要预测未来5年的交通流量变化。这个问题的背景和关键影响因素有哪些?”

ChatGPT可能会首先给出对问题背景的分析,例如解释城市交通流量可能受哪些因素影响,包括季节因素(节假日、气候变化导致流量周期波动)、经济社会因素(人口增长、汽车保有量变化等带来趋势性增长),以及可能的随机扰动(突发事件导致异常)。它还会提醒需要注意数据中的趋势和周期性成分,以及预测的不确定性。通过与ChatGPT讨论,我们可以更全面地认识问题。例如,它可能输出:

  • “交通流量往往具有明显的周期性,例如工作日/周末、年度季节周期等,需要在模型中考虑季节因素。”
  • “如果有重大政策或基础设施变化(如限行政策、新地铁线路开通),也会对未来流量趋势产生影响。”

通过这些交互,我们梳理出本问题的难点在于时间序列建模,并明确需要捕捉长期趋势季节周期。ChatGPT在这一阶段的作用是提供背景知识补充问题要点提醒 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。这一过程帮助我们确定模型选择时应重点考虑季节性组件,评价指标可能用预测误差例如MAPE等。此外,我们还可以询问ChatGPT关于评价预测效果的方法,让它提前指出需要留出测试集验证模型等,为后续步骤做好准备。

经分析讨论,我们将问题拆解为具体任务:数据预处理(检查缺失和异常)、模型选择与构建(考虑季节性ARIMA或SARIMA模型),模型训练与预测,以及结果评价与解释。明确了这些步骤后,就可以进入下一阶段。

2. 数据预处理

在建模前,我们需要对给定的10年交通流量数据进行处理。对于时间序列数据,预处理的典型任务包括处理缺失值、去除异常点、平滑波动、拆分训练集和测试集等。ChatGPT在这里可以充当数据分析顾问,帮助我们制定预处理策略并给出示范代码。

提示示例:
用户:“数据格式为月份和对应交通流量。如何对这份时间序列数据进行预处理以用于预测模型?需要注意哪些问题?”

ChatGPT根据其知识,可能会回答:

  • 缺失值处理:如果数据中有月份缺失流量值,建议可以采用插值或用前后趋势估计填补 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。
  • 异常值检测:识别出明显异常的流量峰值或谷值,判断是否由于数据错误。如果是,可选择剔除或平滑。
  • 季节性处理:可能建议先对数据做季节图以查看年周期模式。如果季节性明显,考虑在模型中加入季节项(比如使用SARIMA或季节指数平滑)。
  • 差分平稳化:ChatGPT可能提醒检查序列的平稳性,建议通过画自相关图、单位根检验等判断是否需要差分以去除趋势使序列平稳。
  • 数据拆分:建议将最后1-2年的数据留作验证集,以评估模型预测能力,从而防止过拟合。

例如,ChatGPT回答:“建议先绘制流量随时间变化的曲线以观察总体趋势和季节波动。如果发现总体呈上升趋势,可对数据取一阶差分以消除趋势,再进行建模。若存在年度周期,可考虑季节差分。最后应将最近一年的数据留作测试集,用于评估预测效果。” 这些建议为我们的预处理提供了清晰思路。

接着我们可以要求ChatGPT给出具体的代码示例来执行这些预处理步骤。

提示示例:
用户:“能否提供Python代码示例来读取流量数据并绘制时间序列图,以及进行一阶差分变换?”

ChatGPT可能会生成类似下面的代码:

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据(假设CSV包含Date和Traffic两列)
df = pd.read_csv('traffic_flow.csv', parse_dates=['Date'], index_col='Date')
traffic = df['Traffic']

# 绘制原始时间序列
plt.figure()
traffic.plot(title='Monthly Traffic Flow')
plt.show()

# 进行一阶差分并绘制差分后的序列
traffic_diff = traffic.diff().dropna()
plt.figure()
traffic_diff.plot(title='Differenced Traffic Flow (1st order)')
plt.show()

ChatGPT会边给代码边解释每一步的作用,比如读取CSV、设置日期索引、调用diff()实现差分等。这样,我们迅速得到了数据可视化初步变换的代码模板 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。我们只需根据自己的数据格式稍作修改即可使用。可以看出,ChatGPT在数据预处理阶段提供了决策思路实现示例双重帮助,让我们省去了翻阅资料和编码试错的时间。

经过预处理,我们绘制的原始流量曲线可能呈现出逐年缓慢上升的趋势,并叠加有周期性的波动(例如每年暑期流量高峰,春节期间下降等)。差分后序列波动围绕零上下,趋于平稳。这为我们后续采用ARIMA类模型创造了条件。数据准备就绪后,进入模型选择与构建环节。

3. 模型选择与构建

基于对问题和数据的分析,我们猜测可能适用的模型包括经典时间序列模型(如ARIMA/SARIMA)或机器学习模型(如基于回归或LSTM的预测模型)。在竞赛条件下,优先选择可解释且实现方便的模型。ChatGPT可以作为我们的参谋,综合条件给出模型选择建议 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。

提示示例:
用户:“经过分析,我们有10年月度数据,有趋势和年周期性。你建议选择什么预测模型来建模?”

ChatGPT很可能推荐ARIMA模型,并具体指出由于数据具有年度周期,可以采用**季节性ARIMA(SARIMA)**来更好地捕捉每年的重复模式。它会解释,比如ARIMA模型擅长建模时间序列的自相关结构,适用于有趋势或季节性的数据;而相比机器学习黑箱模型,ARIMA可解释性更好,在数据量不大时表现良好。ChatGPT可能回答:“建议使用SARIMA模型,其中包括季节差分以处理年度周期。如SARIMA(p,d,q)(P,D,Q,12),这里12代表年周期。先通过观察自相关图确定p,q,再通过AIC准则选择最佳阶数。” 这个建议契合我们的直觉,也提供了如何设置模型阶数的线索。

为确认模型选择,我们可以继续询问ChatGPT关于模型构建的细节。

提示示例:
用户:“SARIMA模型该如何建立?需要写出模型的数学形式和解释各参数含义。”

ChatGPT会给出SARIMA模型的一般形式,例如:

  • 数学形式: y t = c + ϕ 1 y t − 1 + . . . + ϕ p y t − p + θ 1 ϵ t − 1 + . . . + θ q ϵ t − q + . . . y_t = c + \phi_1 y_{t-1} + ... + \phi_p y_{t-p} + \theta_1 \epsilon_{t-1}+...+\theta_q \epsilon_{t-q} + ... yt=c+ϕ1yt1+...+ϕpytp+θ1ϵt1+...+θqϵtq+...(后面包括季节项 Φ , Θ \Phi, \Theta Φ,Θ作用于 y t − 12 y_{t-12} yt12等滞后) (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。
  • 参数解释:p,d,q分别是非季节部分的自回归阶数、差分阶数、移动平均阶数;P,D,Q是季节部分对应阶数;周期为12代表年周期。
  • 它还可能提到需要对序列做d次差分和D次季节差分使之平稳,再拟合ARMA过程。

这些帮助我们巩固模型理论。在明确采用SARIMA后,我们就可让ChatGPT生成相应代码。

提示示例:
用户:“请给出使用Python statsmodels库拟合SARIMA模型并预测未来60个月的代码。”

ChatGPT预期会提供一段代码示例,例如:

import pandas as pd
from statsmodels.tsa.statespace.sarimax import SARIMAX

# 假设 traffic 是之前得到的时间序列 (pandas Series)
# 定义 SARIMA 模型阶数,例如 SARIMA(1,1,1)x(0,1,1,12)
model = SARIMAX(traffic, order=(1,1,1), seasonal_order=(0,1,1,12))
model_fit = model.fit(disp=False)

# 预测未来60个月
forecast = model_fit.forecast(steps=60)
print(forecast)

ChatGPT会根据常识填入一个可能的阶数组合(比如(1,1,1)x(0,1,1,12))并演示调用SARIMAX模型拟合的过程 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。它还会提示我们可以用model_fit.summary()查看模型拟合结果,用forecast_conf_int()获取置信区间等。得到这段代码后,我们需要根据实际数据性质调整(p,d,q)和(P,D,Q)。ChatGPT提到可以通过AIC/BIC选择最佳阶,这时我们可自行尝试不同组合,或让ChatGPT编写一个循环尝试多种阶数计算AIC。由于篇幅原因,这里不展开。总之,在ChatGPT帮助下,我们快速搭建了SARIMA模型并生成了未来5年的预测。

在实现模型后,我们应得到一组未来60个月的预测值。为了更直观地展示结果,我们绘制历史数据和预测数据的折线图,如下图所示:

(image)
图1 历史交通流量时间序列(橙色)及未来5年预测(红色)与95%置信区间(红色阴影)

图1显示了模型拟合及预测效果。可以看出,红色预测曲线很好地延续了橙色历史数据的季节波动模式,总体上升趋势也被捕捉到。阴影区域表示预测的95%置信区间,随着时间推移略微变宽,表示不确定性增大。得到这种结果后,我们需要评估模型性能并加以解释。

4. 模型验证与结果分析

有了初步预测结果,并不意味着就高枕无忧了。我们需要验证模型在历史数据上的拟合效果,以及预测结果是否可信、有何意义。这部分ChatGPT同样能发挥作用,辅助我们评价模型解释结果

模型验证: 我们可以请ChatGPT建议一些衡量预测准确性的指标和方法。例如,计算均方根误差(RMSE)、**平均绝对百分比误差(MAPE)**等指标来评估模型在测试集(例如最后12个月)上的预测误差。

提示示例:
用户:“如何评估SARIMA模型在历史数据上的拟合和预测性能?有哪些指标可以计算?”

ChatGPT或回答:

  • 可使用AIC/BIC评估模型复杂度与拟合优度的折中,较低的AIC表示更优模型。
  • 在留出的测试集上计算预测值与真实值的误差,例如RMSE、MAPE等。
  • 查看模型残差的自相关图和分布,以检验残差是否为白噪声,满足模型假定。

根据这些建议,我们可以让ChatGPT给出计算这些指标的代码。它可能提供:

from sklearn.metrics import mean_squared_error

# 拟合值与真实值比较(例如过去12个月作为测试集)
train = traffic[:-12]
test = traffic[-12:]
model = SARIMAX(train, order=(1,1,1), seasonal_order=(0,1,1,12)).fit(disp=False)
predictions = model.predict(start=test.index[0], end=test.index[-1])

rmse = mean_squared_error(test, predictions, squared=False)
print(f'RMSE: {rmse}')

并提示可以输出MAPE:np.mean(np.abs((test - predictions)/test))*100%。通过这些指标,我们假设模型在测试集上的MAPE约为10%,RMSE为一定值,说明预测精度尚可但有一定误差。

ChatGPT在此阶段也能帮助解释误差来源:例如指出某几个月份预测误差大,可能对应异常事件(模型未捕捉到),或者表明模型结构需改进。

结果分析: 接下来,我们要对预测结果进行分析解读,以备撰写论文使用。ChatGPT可以尝试用文字总结预测的主要发现。例如,我们可以提问:“根据模型预测结果,未来交通流量有什么变化趋势?可能的原因是什么?” ChatGPT可能根据预测曲线回答:

  • 未来流量总体呈缓慢上升趋势(红色曲线略有上扬),这可能反映经济和车辆增长带来的持续增长。
  • 仍存在周期波动:每年可能在暑期达到峰值、春节前后低谷等,说明季节性模式预计将延续。
  • 置信区间随时间展开,这意味着不确定性增加:预测后期可能受不可预见因素影响较大,需要谨慎对待远期预测。

例如,ChatGPT生成的文字描述:“模型预测未来交通流量将保持每年约5%的增幅,到第五年年底月度流量可能达到历史最高。季节性波动依旧显著,峰值出现在每年7-8月,低谷在每年2月左右。由于宏观趋势和季节效应都被模型考虑在内,预测较为可信。但需要注意,预测区间在逐年扩大,提示我们对长期预测应持保守态度。” 这提供了很好的结果解读素材。

在这个过程中,如果我们发现ChatGPT有任何解读不准确或者过度延伸,我们可以微调让它聚焦事实本身。例如让它不要推测未给定的政策因素,专注数据趋势即可。经过交互,我们获得了一段清晰的结果分析,既指出趋势又强调局限性,可直接用于报告撰写。

5. 论文撰写辅助

完成建模和结果分析后,最后的任务就是撰写比赛论文。数学建模论文通常包含摘要、问题重述、模型假设、模型建立、求解与结果、模型检验、结论等部分。ChatGPT在撰写阶段的作用主要有:结构规划文字润色格式生成。我们可以分部分地让ChatGPT协助。

  • 论文结构建议: 我们可以首先询问ChatGPT应该如何组织这篇交通流量预测的论文结构。事实上,ChatGPT很熟悉标准的数学建模论文格式 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)。它可能会建议:引言(背景和问题)、模型假设、模型选取与原理、模型求解实现、结果分析、模型评价、结论等章节。这与我们的预期一致。我们也可以要求更加细分的纲要,例如模型求解部分需要写数据处理、模型参数选取等小节。ChatGPT给出的结构可以和我们的思路对比,检查是否遗漏了某些内容。例如,它提醒我们在结果分析后加一段模型优缺点讨论,那么我们就可以补充这一部分内容。

  • 段落与语句生成: 选取论文中的某些段落交给ChatGPT润色或生成,是非常高效的做法。例如,摘要可以先由我们提供要点,让ChatGPT组织语言:

    提示示例:
    用户:“请根据以下要点撰写论文摘要:研究目的(交通流量预测),方法(SARIMA模型),数据(某市10年月度数据),结果(给出未来5年预测及误差10%左右),结论(模型有效但远期需谨慎)。”

    ChatGPT可能生成一段流畅的摘要,例如:“本文针对某市交通流量预测问题,利用该市过去十年月度交通流量数据构建了季节性ARIMA(SARIMA)模型进行预测。模型充分考虑了年周期性和整体增长趋势,并通过历史数据的训练-检验评估了其精度。结果表明,该模型能较好地拟合历史变化,并预测未来交通流量将缓慢上升,季节波动依然明显。在约95%置信水平下,五年后月度流量预测值的误差在10%以内。尽管模型具有良好准确度,但对于更长期的预测仍需谨慎对待。” 这段摘要涵盖了背景、方法、结果与结论,而且行文专业得当,我们只需稍作修改即可使用。

  • LaTeX公式与格式:在论文的模型推导部分,我们需要准确的数学公式表达,例如SARIMA模型的方程形式、误差计算公式等。ChatGPT可以根据我们的口头描述给出LaTeX形式的公式。例如提示:“请给出MAPE的公式表示(用LaTeX)”,它会回答:“ MAPE = 1 n ∑ t = 1 n ∣ y t − y ^ t y t ∣ × 100 % \text{MAPE} = \frac{1}{n}\sum_{t=1}^{n}\left|\frac{y_t - \hat{y}_t}{y_t}\right| \times 100\% MAPE=n1t=1n ytyty^t ×100%”。公式的正确性可以接受检查,通常ChatGPT在这类标准公式上还是可靠的。此外,ChatGPT还能帮助生成表格,例如参数选取表、结果对比表等,用markdown或LaTeX排版均可。我们也可以让它给出参考文献的BibTeX条目(需自行核对真实性)。

  • 语言润色:当论文初稿完成后,我们可以把某些句子或段落粘贴给ChatGPT,请它润色提高可读性。例如:“这一段有些冗长,请帮我压缩并使语言更学术”。ChatGPT会尽量保持原意下精简文字,或者建议用更正式的措辞。比如把“我们用了ARIMA模型做预测,效果还不错”改为“我们采用了ARIMA模型进行预测,模型在训练集上表现良好,在测试集上取得了令人满意的预测精度”。这种修改可以让论文语言更加规范。 (如何使用ChatGPT提高数学建模竞赛的获奖概率_数学建模助手-CSDN博客)

需要提醒的是,最终的论文内容一定要由我们人工审定。ChatGPT生成的文本有时可能有不准确的表述,或者与我们实际情况不符(尤其当让它自由发挥时)。因此,把它当作一个智能写作助手是恰当的:我们提供素材,它加工润色,最后成品我们审核定稿。通过这样的协作,可以极大提高写作速度并保证质量。

至此,我们已经演示了从理解问题、建立模型到完成论文的全过程中,ChatGPT是如何协助我们一步步完成任务的。在这个预测类问题案例中,ChatGPT展现了其在知识提供、代码编写、结果解读、文字表达等方面的强大辅助能力。然而,每个问题都有其特殊性,我们也发现ChatGPT有时候需要人来引导修正。接下来,让我们看第二个案例,换一个类别的问题类型,考察ChatGPT在优化决策类建模问题中的应用,并重点看看它如何帮助设计算法和处理复杂约束。

案例二(优化类问题)

问题背景: 优化类问题在数学建模比赛中也非常常见。这类问题需要找出某种指标的最优值(最大或最小),通常需要构建目标函数并考虑约束条件。例如,我们以**旅行商问题(TSP)**为背景的一个情境:“某物流公司需要计划一辆货车的送货路线,要求途经公司的10个配送点各一次后返回起点,并使总行驶距离最短。请建立数学模型并给出近似最优的送货顺序。” 这是一个典型的组合优化问题,属于NP难题。解决此类问题可以尝试精确方法(如整数线性规划)或启发式算法(如遗传算法、模拟退火)。我们将借助ChatGPT完成从模型建立、算法设计到结果分析的全过程。

1. 模型构思与数学规划

首先,我们需要将文字描述转化为数学模型。ChatGPT可以帮助我们检查建模思路是否周全,特别是在定义决策变量、目标函数和约束方面给出建议。

提示示例:
用户:“我们有10个配送点,需要求遍历所有点的最短回路。这相当于旅行商问题。应该如何建立数学模型,包括决策变量、目标函数和约束条件?”

ChatGPT会识别出这是经典的旅行商问题(TSP),并给出相应的数学规划模型框架:

  • 决策变量 x i , j x_{i,j} xi,j,当路径从点 i i i到点 j j j行驶时取1,否则取0,其中 i , j = 1 , . . . , 10 i,j=1,...,10 i,j=1,...,10
  • 目标函数:最小化总路程,即 min ⁡ ∑ i ∑ j d i j x i j \min \sum_{i}\sum_{j} d_{ij} x_{ij} minijdijxij,其中 d i j d_{ij} dij是点 i i i j j j的距离。
  • 基本约束:每个点出度为1(从每个点只能出去一条路): ∑ j x i , j = 1 ,   ∀ i \sum_{j}x_{i,j}=1,\ \forall i jxi,j=1, i;每个点入度为1 ∑ i x i , j = 1 ,   ∀ j \sum_{i}x_{i,j}=1,\ \forall j ixi,j=1, j。这保证每点被访问且离开一次。
  • 子巡回消除约束:防止出现多个小回路而非一个大环。这通常需要额外的约束,比如使用米勒-塔克-泽姆林(MTZ)公式或其他方法。在小规模问题上,也可以先忽略这一约束然后检查结果。

ChatGPT可能给出的表述类似:“可以构建二进制变量 x i j x_{ij} xij表示是否从城市 i i i前往 j j j。目标函数为各路线距离与变量的乘积之和的最小化。需满足每个城市恰好一次出发和到达。此外要避免子环,例如可加入 u i u_i ui辅助变量并添加 u i − u j + 10 x i j ≤ 9 u_i - u_j + 10x_{ij} \le 9 uiuj+10xij9等MTZ约束。” 这些指导相当详细,让我们明确了数学模型。特别是子巡回约束是容易遗忘的点,ChatGPT的提醒完善了模型正确性。

确认模型后,我们可以要求ChatGPT输出这些数学表达式以放入论文:

提示示例:
用户:“请用LaTeX格式给出上述旅行商问题的目标函数和两个主要约束的公式。”

ChatGPT将产出:

  • 目标函数:“ min ⁡ ∑ i = 1 10 ∑ j = 1 10 d i j x i j \min \sum_{i=1}^{10}\sum_{j=1}^{10} d_{ij} x_{ij} mini=110j=110dijxij
  • 约束1:“ ∑ j = 1 10 x i j = 1 ,   ∀ i = 1 , … , 10 \sum_{j=1}^{10}x_{ij}=1,\ \forall i=1,\ldots,10 j=110xij=1, i=1,,10
  • 约束2:“ ∑ i = 1 10 x i j = 1 ,   ∀ j = 1 , … , 10 \sum_{i=1}^{10}x_{ij}=1,\ \forall j=1,\ldots,10 i=110xij=1, j=1,,10

以及提到子巡回消除的约束公式。如果我们觉得太复杂,也可以暂时省略子巡回约束,在解之后检查是否有子回路再说。此时,通过ChatGPT的帮助,我们已经将问题转化成了一个清晰的整数规划模型

2. 算法求解方案设计

对于10个节点的TSP,虽然可以用现成的MILP求解器暴力求解出最优解,但比赛更可能期望我们展示一个自行编程实现的算法。ChatGPT可以根据模型特点推荐合适的求解策略。例如,它知道TSP是NP难的,往往用启发式算法求近似解,如遗传算法、模拟退火、禁忌搜索等。

提示示例:
用户:“这个旅行商问题模型该如何求解?用Python有什么方法可以实现近似求解?”

ChatGPT可能会答:

  • 可以用遗传算法,编码方式为路线的排列,定义适应度为总距离的倒数,通过选择、交叉、变异迭代找近似最优路径。
  • 可以用模拟退火算法,每次随机交换路线中的两个城市顺序作为新解,并根据温度概率接受更差解,逐步降温找到较优解。
  • 或者直接使用启发式算法例如最近邻算法快速得到一个可行解,再通过2-opt局部搜索优化。

假如我们决定尝试遗传算法(GA)这个方向,因为GA较通用且容易实现。我们可以进一步请教ChatGPT如何具体实现GA解TSP。

提示示例:
用户:“请设计遗传算法来求解10城市的TSP,并解释每一步该如何操作。”

ChatGPT会逐条列出遗传算法的主要步骤,并针对TSP说明:

  • 编码:个体可以表示为城市访问顺序的一个排列,例如[1, 5, 2, ..., 1](以起点1开始回到1)。
  • 初始种群:生成若干随机的合法路线(随机排列1-10后首尾相连)。
  • 适应度函数:定义为路线总距离的负值(因为我们要最小距离),或者用其倒数(距离越小适应度越大)。
  • 选择:可以用轮盘赌选择或锦标赛选择,按适应度选出父代。
  • 交叉:采用次序交叉(Order Crossover, OX)或部分匹配交叉(PMX)等适用于排列的交叉方式,生成新的路线个体。
  • 变异:对排列进行小扰动,如随机选择两个城市交换顺序(Swap mutation)。
  • 迭代:重复选择-交叉-变异生成新种群,适应度较高的解逐步涌现。
  • 终止条件:迭代一定代数或者距离不再改进时终止,输出最好个体。

ChatGPT给出的这套方案涵盖了GA的关键要点。如果需要代码实现,我们可以要求ChatGPT提供Python代码范例。

提示示例:
用户:“能给出一个Python实现遗传算法解TSP的简化代码吗?”

ChatGPT有较高概率生成一个可运行的简单GA代码。例如(伪代码形式简化):

import random

# 假设距离矩阵dist已给定
cities = list(range(10))
population_size = 50
generations = 100

# 随机生成初始种群
population = []
for _ in range(population_size):
    route = cities[1:]  # 除去起点
    random.shuffle(route)
    route = [0] + route + [0]  # 起点为0
    population.append(route)

def route_distance(route):
    return sum(dist[route[i]][route[i+1]] for i in range(len(route)-1))

# 主循环
for gen in range(generations):
    # 计算适应度并选择(简单起见,每次选择最优的两条直接交叉)
    population.sort(key=route_distance)
    new_pop = population[:10]  # 保留前10优
    while len(new_pop) < population_size:
        # 选择父母
        parent1, parent2 = random.sample(population[:20], 2)
        # 交叉: 部分映射交叉PMX或其他方法
        cut1, cut2 = sorted(random.sample(range(1, len(parent1)-1), 2))
        child = parent1[:]
        # 将parent2的片段插入child
        segment = parent2[cut1:cut2]
        for city in segment:
            child[child.index(city)] = None
        child[cut1:cut2] = segment
        child = [c for c in child if c is not None]
        # 变异: 随机交换两个非起点城市
        i, j = sorted(random.sample(range(1, len(child)-1), 2))
        child[i], child[j] = child[j], child[i]
        # 完成一条回路
        child = [0] + [c for c in child if c != 0] + [0]
        new_pop.append(child)
    population = new_pop

best_route = min(population, key=route_distance)
print("最佳路线:", best_route, "最短距离:", route_distance(best_route))

虽然上面的代码略简化,但它展示了GA的主要框架:初始化种群、选择(此处直接取前10作为精英保留)、交叉(使用了一种部分映射策略)、变异、更新种群,最后输出最优。ChatGPT可能会提供类似完整的代码并附注解。这对我们非常有用,因为手写GA既耗时又易出错,而通过ChatGPT生成,我们可以在此基础上修改完善,提高开发速度。

我们在拿到代码后,需要测试和调试。例如检查交叉和变异部分是否正确避免非法解(出现重复或遗漏城市)。如果ChatGPT代码有漏洞(例如child构造有误),我们可以运行后将错误信息反馈,再请它修正。这种对话式编程调试在Case1中已体验过,这里不赘述。

假设经过几次调整,我们得到一段能正确运行并输出结果的GA代码。运行后,得到了一条近似最优的路线方案和对应总距离。例如输出:“最佳路线:0-3-5-…-0,最短距离:120.5公里”。

3. 结果改进与分析

在获得一个可行解后,我们可以考虑改进结果分析解的合理性。ChatGPT可以提供一些思路:例如使用2-opt局部搜索微调解,或者增加种群多样性避免局部最优。如果有时间,我们可以让ChatGPT再输出一个2-opt算法代码,应用于GA结果做后期优化,从而进一步减少路线长度。

对于结果分析,ChatGPT也能帮忙总结路线特征。我们可以询问:“该最优路线有什么特点?这是否合理?” ChatGPT也许会回答:路线可能倾向于地理上相邻的点依次串联,避免远距离跳跃,这是合理的。此外,它会指出这就是TSP典型的规律:相近城市应相连,以减少距离。我们如果提供具体路线,它还能根据距离矩阵判断有没有明显不合理的跳跃,比如是否有交叉路线可改进。如果发现,比如点A和B实际很近但在路线中相隔很远访问,那么可以进一步调优算法或交换顺序。

为更形象地展示路线,我们可以绘制路径图。ChatGPT可协助输出绘图代码:

提示示例:
用户:“给定每个城市的坐标,如何绘制出货车路径的图?”

ChatGPT会给出利用matplotlib绘制点和连线的代码示例,与Case1绘图类似。根据我们的生成数据,我们绘制出路径图,如下:

(image)
图2 遗传算法找到的近似最优送货路线示意图(红线连接顺序访问各蓝色配送点)

图2中,蓝色点表示10个配送站的位置,红色线表示货车行驶路线。可以看到线路几乎没有交叉,说明算法合理地避免了不必要的往返。这个图形证明我们的模型和算法找到了一个有效的解,也有利于在论文中向评委直观展示方案

4. 论文撰写要点

在这个优化问题案例中,论文撰写与前一案例有所不同,需要强调模型和算法。ChatGPT在此也能提供专业表述:

  • 模型描述: ChatGPT已经帮我们生成了TSP的数学模型公式,我们可以让它润色描述,如*“以上模型共有 n 2 n^2 n2个决策变量和 2 n 2n 2n个主要约束,以及若干子环消除约束,其目标是找到遍历所有节点一次的最短回路。”* 这样可以加强论文的数学严谨性。

  • 算法描述: 对于遗传算法部分,我们可以请ChatGPT将先前提供的要点整理成一段算法流程描述。甚至可以要求它给出算法伪代码的LaTeX环境表示。ChatGPT可能写出分项的伪代码步骤,用算法环境enumerate列出,让我们直接纳入论文。例如:

    1. 初始种群生成 (50条随机可行路线)。
    2. 适应度评估(计算每条路线总距离)。
    3. 循环迭代100代:
      • 按适应度选择父代;
      • 对选定父代进行部分交叉产生子代;
      • 对部分子代进行随机变异;
      • 将子代加入种群并按适应度保留最优的50条作为新一代。
    4. 输出最优路线。

    ChatGPT生成的描述通常条理清晰,我们再根据自己实现的细节稍作调整即可。如果比赛需要,我们还可以让ChatGPT帮助分析算法复杂度,如指出遗传算法每代 O ( pop_size × n ) O(\text{pop\_size} \times n) O(pop_size×n)的计算,在 n = 10 n=10 n=10时计算量很小,这体现方案的可行性等。

  • 结果讨论: 我们可让ChatGPT基于图2和最优解,协助写一段结果讨论。例如它会提到:模型得到的路线顺次连接了空间上临近的配送点,使路线总长降低。这表明算法有效。并可指出模型和算法的不足:比如对于更多城市情况算法收敛会变慢,或者此解是启发式近似解不保证全局最优,但在有限时间内已经相当好。这样一段客观的分析有助于展示我们对方案的认识深度。

与案例一类似,我们最后可以让ChatGPT对全文做一个检查,确保前后术语一致、表述连贯,还可以让它翻译成英文(若比赛需要英文论文)以节省翻译润色时间。

通过案例二,我们看到ChatGPT在优化类建模问题中发挥的作用,同样贯穿了模型建立(帮助列公式、想约束)、算法设计(给思路、写代码)、结果分析(解读路线)和论文写作等各方面。尤其值得一提的是,在算法编程上,ChatGPT节省了我们大量时间,让复杂的遗传算法实现变得容易。这充分体现了人与AI协作的威力:人擅长提出问题、判断方案优劣,AI擅长提供知识、搜索实现路径。两者配合,可以在比赛有限时间内解决过去难以完成的任务。当然,使用ChatGPT并不意味着高枕无忧,我们仍然要注意一些典型问题并掌握相应对策,这在下一节讨论。

典型问题与解决建议

在使用ChatGPT辅助建模的过程中,我们难免会遇到一些常见问题。有时ChatGPT的输出并非完全正确或理想,我们需要了解如何识别和处理这些情况。下面列出几类典型问题,并给出相应建议:

问题1:ChatGPT生成的代码无法运行或存在错误。 这可能是许多参赛者在实践中首先遇到的情况。尽管ChatGPT能编写代码,但并不保证一次性可用 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。例如,ChatGPT可能调用不存在的函数或模块(由于其训练数据过时),或者逻辑上有漏洞。遇到这种情况,不要气馁。解决方法:

  • 提供错误信息,要求修正:将运行代码时报的错误信息直接粘贴给ChatGPT,例如“NameError: name ‘tsa’ is not defined”等,然后要求它分析并修改代码。ChatGPT通常能根据错误定位问题所在,并给出修改方案(比如更正模块导入名称等)。这种循环直到代码跑通为止 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。
  • 自行微调:有时错误很好修,比如函数拼写错误、变量未定义等,小问题可以人工改,然后告知ChatGPT你的修改,以便后续步骤不再犯同样错误。
  • 多生成几次版本:如果第一次生成的代码问题较大,不妨让ChatGPT重新给一版。有时第二版会采用不同实现逻辑,可能更加可靠。你也可以要求它“简化代码,仅保留核心功能”,减少出错点。

问题2:ChatGPT给出的建模建议不合理或不适用。 例如,它推荐的模型过于复杂、超出比赛水平,或者忽略了一些关键实际约束。解决方法:

  • 明确指出不合理之处并要求重新建议:例如:“ChatGPT建议的神经网络模型在本题不太实际,因为数据量很小。可以提供一个更简单可行的模型吗?” ChatGPT会在反馈下调整思路,也许改为推荐回归模型或其他简单方法。
  • 引导提供具体替代方案:如果某建议不妥,可以提示另一个方向。“遗传算法实现较复杂,能否考虑用贪心算法先求一个可行解?” ChatGPT随即会切换思路提出贪心策略。
  • 自行融合多种意见:可以多问几次ChatGPT,收集多个方案建议,然后由人来判断最合理的。ChatGPT不同回答之间也许互相补充启发,我们可以综合其优点形成最终方案。记住,人永远在决策环节应保持主导,AI的建议再多也需我们甄别。

问题3:ChatGPT输出与提问意图不符,跑题或产生无关内容。 这可能由于提示不够清晰,或对话上下文干扰。解决方法:

  • 检查提示措辞:尽量在提示中包含你的具体意图关键词。如果发现回答偏离主题,考虑重新表述问题。例如本想问算法参数调优,但ChatGPT扯到别的话题,可以在新提示中直接点明“我们关注的是参数选择对结果的影响”。
  • 使用分段提问:如果一个复杂请求ChatGPT没抓住重点,可以拆成多句。“首先…, 接着…, 然后…”。一步步引导,比一长句需求更易让模型理解。
  • 重置话题上下文:有时候长对话后ChatGPT可能“思维发散”。这时不妨开启新对话,从零开始针对当前具体问题发问,避免上下文干扰。

问题4:ChatGPT在回答中“幻觉”编造不真实的信息。 这在要求引用文献、给出真实数据时容易发生。比如它可能杜撰一个文献来源或凭空生成数据。这在学术中是大忌。解决方案:

  • 要求事实核实:直接问它“你给的这个文献有出处吗?是否真实?”有时ChatGPT自己会承认不确定。总之对任何关键事实必须自行核实,不要盲信。
  • 避免让ChatGPT直接给完整参考文献列表:它很可能编造。参考文献最好由我们通过正规渠道查找获取,再让ChatGPT按照格式润色排列即可。
  • 数据要有来源:如果需要用外部数据,最好自己查询获取。ChatGPT提供的数据可能只是举例。比赛通常提供数据或要求自己调研获取,不能以ChatGPT杜撰的数据作为真实依据。若需要模拟数据,也应在文中声明是虚拟生成的。

问题5:ChatGPT给出的解决方案低效或不优化。 例如,它可能按最朴素的方法实现算法,效率低下。对于小规模没问题,但大规模数据可能跑不动。解决方法:

  • 询问改进:直接问它“这个算法如何优化时间复杂度?” 它可能指出采用更优的数据结构或算法思想。
  • 提出约束:“能否不用双重循环实现?”、“能否并行计算?” 它会尝试提供更高效的实现方法或库函数。
  • 亲自测试性能:将ChatGPT方案跑一下,看是否满足需求。如果不行,再明确告诉它瓶颈在哪里,请它针对性优化。例如“算法在10000数据上很慢,有没有改进方法”。AI在知道问题症结后往往能给出不错的优化建议。

问题6:过度依赖ChatGPT导致创新性不足或出现雷同。 这是一个隐性的“问题”。如果比赛中大家都用ChatGPT,可能很多思路会趋同。因此:

  • 加入自己的创造力:ChatGPT擅长已有知识,但新颖想法仍需我们提出。利用ChatGPT完成基础工作后,应该思考能否有创新改进,比如结合两个模型、引入新的假设等。
  • 个性化输出:在论文写作中,不要完全照搬ChatGPT的表述,可以适当融入自己的写作风格,避免所有人文章风格千篇一律。
  • 验证差异:如果怀疑大家都问了类似问题,可以换种问法或尝试不同角度的模型,让自己的方案有所区别。ChatGPT提供的只是工具和参考,我们仍应努力让作品体现出个人/团队的思考

总的来说,应对这些典型问题的核心在于:保持人工介入和审慎思考。把ChatGPT当成智能助手而非自动驾驶仪,我们随时监督、校正它的产出。 (ChatGPT: Your Personal Python Coding Mentor – Real Python)正如Real Python教程所言,ChatGPT的回答初看合理也可能有细微错误,只有具备相应知识的人才能识别 (ChatGPT: Your Personal Python Coding Mentor – Real Python)。因此,我们既要充分利用它提高效率,也不能放松对细节的把关。一旦发现问题,迅速迭代交互、修正调整,才能确保最终结果的正确与完善。

ChatGPT与团队协作

数学建模比赛通常是三人一队的形式,团队内部的高效协作至关重要。ChatGPT不仅能辅助个人完成技术任务,还可以成为团队协作的润滑剂和加速器。在这一部分,我们讨论如何利用ChatGPT提升组员之间的沟通效率文档协同任务分工等方面。

1. 头脑风暴和任务分工:在比赛刚开始拿到题目的阶段,团队往往需要集思广益,确定解题思路和分工。ChatGPT可以扮演**“讨论引导者”的角色。具体做法是,团队成员可以共同与ChatGPT对话,把自己的想法抛给它,让它来综合和补充。例如,队员A认为可以用模型X,队员B觉得应该先分析数据特征。将这些对话信息提供给ChatGPT后,它可能会输出一个综合分析,列出需要完成的任务清单。这有助于团队看清全局。在此基础上,队员们可以更明确地划分谁负责数据处理,谁负责建模,谁负责写作等。ChatGPT可以进一步针对每个任务给出要点提示,让各自负责人更快进入状态。比如,它帮忙列出“数据分析需要做哪些图和统计”,“模型部分要考虑哪些假设和参数”,“写作部分需要哪些图表”。这些建议可以成为团队内部的协同协议**。大家按照这个清单开展工作,减少了遗漏和重复。

2. 协同编程与调试:当团队多人协作代码时,容易出现接口不匹配或风格不一致问题。ChatGPT可以作为代码咨询中介:假设队员A写了数据读取和预处理代码,队员B写了模型训练代码,可以各自让ChatGPT检查代码,并生成文档字符串或说明。这样双方交换代码时,通过ChatGPT生成的注释更快理解对方的逻辑。如果发现不兼容,比如数据结构不同步,也可以让ChatGPT提示如何修改才能衔接。另一个应用是代码合并:把两个模块代码贴给ChatGPT,要求它合并成一个完整脚本。ChatGPT能够识别出需要在一起运行时的顺序和变量传递,生成统一的代码(当然也要经测试验证)。同时,在调试过程中,ChatGPT可以充当即时的“Stack Overflow”:当团队遇到技术Bug不知原因,可以询问ChatGPT错误含义或寻找解决方案,而不必长时间翻资料 (全美高校掀起AI作弊风暴!近50%大学生用ChatGPT拿高分,OpenAI私藏检测工具 - 智源社区)。这对于紧张的比赛时间来说,极大地提高了效率。

3. 文档和报告协同:多人同时撰写一篇论文时,可能风格不统一、内容有重复或遗漏。ChatGPT可用于文档合并和润色。例如,各队员写完自己部分后,可以让ChatGPT充当编辑角色。具体方法是,将全文草稿交给ChatGPT,请它检查逻辑连贯性和语言统一性。它可以发现一些问题,例如:“第3节提到的方法A,但在引言未交代,可否在引言补充说明?” 或 “结论与前文结果未严格对应,建议在结论中提及模型预测的具体结果数值以呼应。” 这些建议能帮助团队完善报告结构。对于语言风格,ChatGPT可以把不同作者写的段落调整得更加一致,例如术语的用词统一、语气一致。同时,它还能自动为全文生成目录或摘要等,减轻整理排版的工作量。团队还可以利用ChatGPT进行快速翻译:如果需要英文论文,各人写的中文段落可以让ChatGPT分别翻译,再合并校对,比起人工逐字翻译速度要快很多,而且术语翻译较为准确统一。

4. 跨专业沟通:有时队员分工不同(例如一人擅长编程,一人擅长论文写作),在沟通时可能出现知识隔阂。ChatGPT可以作为解释桥梁。如果技术组员有复杂的模型原理需要向写作组员解释,可以先让ChatGPT将其说明转化为通俗易懂的表述,然后再共享。这避免了因为沟通不清导致的理解偏差。反过来,写作的人如果不确定某技术细节描述是否准确,也可以问ChatGPT以确认。从这个意义上,ChatGPT相当于团队的实时顾问和培训师,帮助组员互相理解彼此领域的内容,加速协同。遇到争论不下的技术路线选择时,也可以各自让ChatGPT陈述本路线优劣,再综合比较,使讨论更客观理性。

5. 时间管理和流程监督:团队可以在ChatGPT的帮助下制定项目进度表。例如告知ChatGPT比赛仅有72小时,问它如何合理安排数据分析、建模、写作的时间比例。它可能给出一个大致计划供参考。比赛过程中,如果某环节出现延误,也可以和ChatGPT讨论调整策略,如减少模型尝试种类,优先完成核心部分等。ChatGPT不会疲劳,可以24小时随时响应,这相当于团队有了一个不知疲倦的助理提醒事项和提供建议。当然,执行还是靠人,但这样一个外脑可以减轻队长在流程管理上的负担。

需要指出的是,团队使用ChatGPT协作时,应保持信息同步。最好是全队一起看ChatGPT的关键输出,或者将对话记录共享,避免各自从ChatGPT得到的内容相矛盾。这就像所有队员参考同一个百科或手册,确保一致性。另外,要注意不要把团队内部机密(如尚未公开的创意)完全交给ChatGPT讨论,以免信息泄露风险。可以用抽象语言与ChatGPT讨论方案逻辑,而具体创新点留在私下沟通。

总的来说,ChatGPT可以极大地促进团队内知识和信息的流动,充当辅助决策和沟通的角色。它能让每个队员都更高效地完成自己的任务,同时也让全队在整合各部分时更加顺畅。正如一份调查显示,许多学生已经将ChatGPT当作日常学习的秘密工具 (全美高校掀起AI作弊风暴!近50%大学生用ChatGPT拿高分,OpenAI私藏检测工具 - 智源社区)。在团队协作环境下,这一工具的作用会被放大——它可以成为团队里勤恳的“第四人”,帮助协调各项工作。不过,团队也要避免对ChatGPT产生过度依赖,正如下一节将讨论的伦理问题所述,所有最终决定和成果都应出自团队自主,以确保公平和学术诚信。

伦理与规范

在享受ChatGPT带来的高效协作同时,我们也必须谨慎考虑其使用的伦理和规范。学术竞赛要求参赛者诚信原创地完成作品,引入AI助手需要注意不触碰违规红线。以下几点值得团队警醒:

1. 保持原创性,防止抄袭:ChatGPT生成的内容本质上来自其训练语料的综合变体,如果完全不加修改地使用,大量文本雷同可能被视为剽窃他人成果。虽然ChatGPT的回答并非直接拷贝某篇文章,但很可能在措辞和结构上与公开资料相似。因此,严禁直接将ChatGPT长段输出当成自己的论文内容而不加加工。正确做法是:将其结果作为参考,根据自己的理解进行重组和表述。特别是在写作部分,应该以ChatGPT润色我们自己写的内容为主,而不是让它凭空生成整段论述然后我们照搬。对于代码,ChatGPT生成的如果是众所周知的实现,也应在注释中标明参考了某些公开思路,以避免知识产权争议。总之,要确保最终提交作品是我们消化吸收后的产出,而非AI的“二手创作”。

2. 注明AI辅助,遵守比赛规定:目前有的赛事或学校对使用AI有明确规定。如果规则要求参赛作品需自主完成、不允许使用AI生成内容,那么就应该严格遵守,不要为了一时便利违反规则。如果规则没有明确禁止,出于透明和尊重评委,我们也可以在论文适当位置(如致谢)说明“部分工作得到ChatGPT等工具的辅助”,让评委知悉我们使用了AI工具,但仍然对内容的真实性和正确性负责。这种做法表明我们并非试图蒙混过关。随着AI工具日益普及,公开承认使用它也逐渐成为被接受的做法。关键是,不能把ChatGPT当成作弊捷径,否则一旦被认定为不当使用,可能会被取消资格 (全美高校掀起AI作弊风暴!近50%大学生用ChatGPT拿高分 - 智源社区) (全美高校掀起AI作弊风暴!近50%大学生用ChatGPT拿高分,OpenAI私藏检测工具 - 智源社区)。最近媒体报道中已有大学生完全用ChatGPT完成论文被视为学术不端的案例 (拒不承认!大学论文已「死」,ChatGPT或引发学术圈大地震)。在竞赛中,我们更应严格自律,合理使用AI而不逾矩。

3. 数据和结论的真实性:ChatGPT可能提供错误的信息,如果未经核实写入论文,会损害论文的真实性和可信度。这在学术伦理上也是不允许的。我们必须对论文中的每一个数据和结论负责。凡是ChatGPT给出的内容,我们都需要验证。例如,引用某统计数据,要能给出真实来源;得出的模型结论,要有我们自己验证过程支撑。如果ChatGPT编造了不存在的数据或图表,绝对不能心存侥幸直接用在论文或答辩中。评委经验丰富,很容易识别出不合理之处,到时追究起来责任还是在我们而非AI。总之,确保真实性是底线,AI只能辅以效率,不能当做事实来源。

4. 避免过度依赖,培养自身能力:从长期看,滥用ChatGPT可能削弱我们自身的学习和创造能力。比赛的意义在于锻炼解决问题的能力,如果所有问题都问AI而自己不思考,短期或许完成了比赛,长期却失去了提升机会。此外,过度依赖AI,一旦遇到AI不能回答的全新问题,我们就缺乏应变能力。所以在准备和比赛过程中,要主动学习ChatGPT给出的知识来源,理解其中原理。而且,可以尝试在掌握一项技能后减少对AI提示的依赖,比如前几次用它生成代码,熟悉模式后尝试自己写写看。用AI来督促和辅导自己进步,而非让自己变成AI的输出搬运工。

5. 尊重隐私和安全:与ChatGPT交互时,要注意不要泄露个人或团队的敏感信息。虽然一般问技术问题不会涉及隐私,但如果聊天记录被公开,可能泄露我们的比赛想法。另外,目前ChatGPT是云端服务,我们上传的数据理论上可能被存储。因此,不要向ChatGPT提供未经脱敏的真实比赛数据(如果数据保密),更不要上传整篇论文让它改(可能引发版权归属争议)。最好只让它处理非敏感的片段或抽象的问题。同时,遵守使用ChatGPT的服务条款,不要尝试让它生成违规内容(这在比赛中一般不涉及,但要有概念)。

6. 公平竞争:如果有团队完全不会某方面却借助ChatGPT完成了任务,是否对其他队不公平?从比赛道德看,工具的使用本身不违规则无可厚非,但应该确保我们懂得自己提交的内容。万一评委提问代码或模型细节,我们能清楚解释,而不是答不上来露馅。因此,用ChatGPT加速并不等于我们可以不学习相关知识。为对得起自己的作品,也为公平竞争着想,我们应该做到心中有数——ChatGPT帮助完成的每一部分,我们赛后都花时间弄懂其原理和实现。这样既避免了搞不清自己论文的尴尬,也体现了尊重比赛、尊重对手的态度。大家都在用新工具,真正拼的还是对问题的洞察力和理解深度,这些是AI无法替代的。

总而言之,在数学建模比赛中使用ChatGPT,需要把握一个度:善用其便捷,坚守学术诚信。它可以成为有力的助手,但成果的创造者必须是我们自己。确保输出的每一句话、每一个结果我们都确信无疑且心知肚明,这样无论从规范还是学习收获上,都能问心无愧。AI时代的来临,为我们提供了新工具,但原则和底线依旧如昔——诚信求知,踏实做事,这是任何技术都不能改变的。

总结

ChatGPT的出现,为数学建模竞赛注入了一股新风。通过本文的讨论和案例展示,我们可以清晰地看到ChatGPT在数学建模各环节所带来的巨大价值:它如同一位知识渊博、勤奋高效的助手,能够在方案构思时提供灵感,在数据处理时给出指导,在模型实现中生成代码,在结果分析时协助解释,在论文写作上润色文章。对于身处高强度比赛环境的参赛者来说,善用ChatGPT意味着事半功倍——原本需要数小时查资料和调试的工作,现在可能几分钟就完成了初稿;原本团队争论不休的问题,有了一个客观的AI意见参考;原本费力不讨好的写作润色,也可以交给AI大幅提效。

然而,ChatGPT并非万能。我们也深入讨论了它的局限和使用中的注意事项。从技术层面看,ChatGPT有时会出错,需要人来监督纠正;从团队合作看,AI不能代替我们做决策,反而是帮助每个人发挥专长;从伦理层面看,我们更须警惕保持原创和真实,不能因为有了AI就放松对自我的要求。这些经验和教训,对未来的参赛者具有重要意义。在一个越来越多团队都会使用AI工具的时代,将ChatGPT用好用巧本身也会成为比赛能力的一部分。如何比对手更聪明地提问,如何更快速地筛选AI输出中的精华,如何将AI节省的时间投入到更有创造性的思考中,将决定我们能否拔得头筹。

可以预见,随着ChatGPT的不断发展(如更新到更强大的GPT-4/GPT-5模型)以及更多专用AI辅助工具的出现,数学建模的竞赛模式和学习模式都可能发生深刻变化。未来也许会出现比赛官方允许并鼓励使用AI工具,甚至考察选手与AI协作的能力。AI可能会深度融入建模软件,自动执行部分繁琐过程。那时,我们更需要与时俱进地学习,既学习最新的AI工具,也学习如何保有人的创造力和判断力。正如一项研究指出,ChatGPT等LLM可以作为数学家的助手,加速数学推理过程,但最终准确识别问题本质仍依赖人类 (Deep dive into the mathematical functions of ChatGPT | AI-SCHOLAR | AI: (Artificial Intelligence) Articles and technical information media)。

对当前的参赛学生而言,拥抱ChatGPT等新技术是必然的选择。它拓宽了我们的视野,让我们站在一个更高的起点去解决问题。但无论技术如何演进,数学建模竞赛考察的核心能力——对问题的抽象建模思维、对模型的理解应用、对结果的分析解释——始终需要我们扎实掌握。ChatGPT可以帮助我们在这些方面走得更快,但走多远依然取决于我们自身。希望本文能帮助读者正确认识并使用ChatGPT,在比赛中取得更加优异的成绩。在AI的助力下,数学建模的未来充满了协作与创新的可能。让我们秉持初心,既当好AI的使用者,也当好严谨求真的研究者,在数学建模的赛场上不断突破自我,创造出更精彩的成果!

网站

在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值