leetCode1139——最大的以 1 为边界的正方形

每日一题 leetCode,今天是 leetCode1139,属于中等难度题目,核心思想就是预处理优化,算法比较容易想到,偏暴力循环求解。

题目:

给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0。

示例 1:

输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9
示例 2:

输入:grid = [[1,1,0,0]]
输出:1
 

提示:

1 <= grid.length <= 100
1 <= grid[0].length <= 100
grid[i][j] 为 0 或 1

解析:对于一个任意二维数组,想要构成正方形,时间复杂度一定是 O(N^3)级别,对于任意一个点(i, j),构造边长为 border 大小的正方形,判断该正方形是否符合边界全为0的要求,如果满足,则记录下;如果不满足,则继续循环。但是会存在两个个问题,第一个问题是,如果 border 每一次都是从 0 开始到 Math.min(grid.length, grid[0].length)范围,会出现某一个点满足条件,但是不是全局最优解;第二个问题后文阐。

所以,更好的方法是最外层循环用 border 从 Math.min(grid.length, grid[0].length)到0,依次递减,内保是点的循环,意义是:按照边长最大获取,如果可以构成正方形,立即结束,表述可以满足;如果不能构成正方形,位置点继续往下,然后边长减小。这样,返回的结果就是找到的最小的,满足题目要求

总体框架:

for (int border = Math.min(grid.length, grid[0].length); border > 0; border--) {
    for (int i = 0; i + border - 1 < m; i++) {
        for (int j = 0; j + border - 1 < n; j++) {
            // 以 i,j 点为左上角顶点,border 为边长大小,构成的正方形
            if (该正方形满足条件) {
                return border * border;
            }
        }
    }
}

那么问题来了,怎么判断“该正方形是否满足条件”呢?

是写循环判断?——时间复杂度到了 O(N^4),可以通过测试点,但是,不是最优的解决方法

——很简单,对于四个正方形顶点来说,只要顶点4条边1的数量等于边长(border),则说明该正方形满足条件。那么,我们可以想到,左上顶点向右1的长度等于边长border;左上顶点向下1的长度等于边长border;右上顶点向下1的长度等于边长border;左下顶点向右1的长度等于边长border;如果满足4个条件,则说明已经撑到最大了!因为 border 是递减的,有点小小的贪心意思在里面。

你有没有发现,只需要统计每个顶点向下和向右的1的个数即可。问题又来了,怎么去统计每个顶点有几个向下的1,几个向右的1?——当然可以在之前进行统计预处理!时间复杂度为 O(N^2),我们需要定义两个二维数组

int m = grid.length;
int n = grid[0].length;
// 生成向右存储数组
int[][] rightStore = new int[m][n];
// 生成向下存储数组
int[][] downStore = new int[m][n];

对于右边1的统计,规则是:如果该位置为0,则向右一定为0个;如果该位置为1,但是是最后一个位置,那么,该位置一定为1;如果该位置为1,并且不是最后一个,那么,该位置等于该位置的右边一个位置统计的结果加1!向下的1统计方法也是同样的道理。是不是有点动态规划的意思了!

代码如下:

// 生成右数据
for (int i = 0; i < m; i++) {
    for (int j = n - 1; j >= 0; j--) {
        if (grid[i][j] == 0) {
            rightStore[i][j] = 0;
        } else {
            if (j == n - 1) {
                rightStore[i][j] = 1;
            } else {
                rightStore[i][j] = rightStore[i][j + 1] + 1;
            }
        }
    }
}


// 生成下数据
for (int i = m - 1; i >= 0; i--) {
    for (int j = 0; j < n; j++) {
        if (grid[i][j] == 0) {
            downStore[i][j] = 0;
        } else {
            if (i == m - 1) {
                downStore[i][j] = 1;
            } else {
                downStore[i][j] = downStore[i + 1][j] + 1;
            }
        }
    }
}

如此一来,if 中“该正方形满足条件”可以得到:

if (左上角向下的1大于等于 border

        && 左上角向右的1大于等于 border

        && 右上角向下的1大于等于 border

        && 左下角向右的1大于等于 border

)

代码:

if (downStore[i][j] >= border
        && rightStore[i][j] >= border
        && downStore[i][j + border- 1] >= border
        && rightStore[i + border - 1][j] >= border

)

核心代码大功告成!

所有代码:

public static int largest1BorderedSquare(int[][] grid) {
    if (grid == null || grid.length == 0) {
        return 0;
    }
    int m = grid.length;
    int n = grid[0].length;
    // 生成向右存储数组
    int[][] rightStore = new int[m][n];
    // 生成向下存储数组
    int[][] downStore = new int[m][n];
    int ans = 0;

    // 生成右数据
    for (int i = 0; i < m; i++) {
        for (int j = n - 1; j >= 0; j--) {
            if (grid[i][j] == 0) {
                rightStore[i][j] = 0;
            } else {
                if (j == n - 1) {
                    rightStore[i][j] = 1;
                } else {
                    rightStore[i][j] = rightStore[i][j + 1] + 1;
                }
            }
        }
    }


    // 生成下数据
    for (int i = m - 1; i >= 0; i--) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] == 0) {
                downStore[i][j] = 0;
            } else {
                if (i == m - 1) {
                    downStore[i][j] = 1;
                } else {
                    downStore[i][j] = downStore[i + 1][j] + 1;
                }
            }
        }
    }

    // 以 border 为边长 i j 位置为顶点,想右下延伸
    for (int border = Math.min(grid.length, grid[0].length); border > 0; border--) {
        for (int i = 0; i + border - 1 < m; i++) {
            for (int j = 0; j + border - 1 < n; j++) {
                if (downStore[i][j] >= border && rightStore[i][j] >= border
                    && downStore[i][j + border - 1] >= border && rightStore[i + border - 1][j] >= border) {
                    return border * border;
                }
            }
        }
    }
    
    return 0;
}

还有一个遗留问题,也是笔者一开始错误的原因!为啥我用这样的 for 循环就不行呢?

        int ans = 0;

        // 以 i j 位置为顶点,想右下延伸

        for (int i = 0; i < m; i++) {

            for (int j = 0; j < n; j++) {

                for (int border = 1; border <= Math.min(n - j, m - i); border++) {

                    // 边长为 border 大小

                    int curMax = Math.min(

                            Math.min(downStore[i][j], rightStore[i][j])

                            , Math.min(downStore[i][j + border - 1], rightStore[i + border - 1][j])

                    );

                    ans = Math.max(ans, Math.min(curMax, border));

                }

            }

        }

这个是笔者之前错误的写法,我用的是先从点 (i, j)开始,边长从小到大尝试,看看每个点最多的 1 的数量,三个点去最小的。听起来是不是很有道理?实际上这个算法不行!虽然我这个只有3个测试点没过,但是,大概率是因为 leetCode 对于这个测试有点“水”,我们来看一组数据

                 {1,0,1,1,1,1,1,1}
                ,{0,0,1,1,0,1,1,0}
                ,{0,1,1,0,0,1,1,0}
                ,{1,0,1,0,1,1,1,1}
                ,{1,1,1,1,1,1,0,1}
                ,{0,1,1,1,1,1,1,0}
                ,{0,1,1,1,1,1,1,1}

就是这组二维数组,我们看看 grid[0][2]这个位置的1,最大可以构成边长为多少的正方形?当然是2!而按照 border 从0开始增大的算法结果是4!因为,他取了最小的是4,但是忽略了,在4的条件下是无法构成正方形的!这个点,不给这个测试用例,笔者真没想到,完全属于逻辑漏洞!

总结:本题不是一道很难想的题目,就算是用 O(N^4) 的算法一样可以过测试点,具有启发性的思考是用动态规划的思想进行预存储,这样我每次判断的时候时间复杂度都是 O(1)~!

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值