【基础】什么是mAP均值平均精度?

mAP(Mean Average Precision)均值平均精度

正例与负例

现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive),然后我们就能得到如下的四种情况:

(+ +)即实际正例,预测正例

(1)True positives(TP)(+ +): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);

(2)False positives(FP)(- +): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;

(3)False negatives(FN)(+ -):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;

(4)True negatives(TN)(- -): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。

Precision(精确率)

精确率 = 实际正确且判定为正确的总数 / 所有判断为正确的数目(无论该样本原来真假)

precision = TP/(TP+FP)

个人理解:机器在所有判定为正确的样本数目中,真正正确的样本数目(模型预测的所有目标中,预测正确的比例)

Recall(召回率)

召回率 = 正确预测样本中实际正样本数 /实际的正样本数

Recall = TP/(TP+FN)

个人理解:总共有那么多正样本,模型把这些正样本找出来的比例占多少(所有真实目标中,模型预测正确的目标比例)

ACC(准确率)

ACC 代表 Accuracy,即准确率,准确率表示预测样本中预测正确数占所有样本数的比例,计算公式为:

准确率 = 预测样本中所有被正确分类的样本数 / 所有的样本数

ACC = (TP+TN)/(TP+FP+TN+FN)

mAP简介(可以直接看这个,上面的很繁琐)

在这里插入图片描述

取不同的阈值(卡Confidence),计算在该阈值下的Precision和Recall

然后画出P-R图,计算出图中蓝色区域面积即是该类别AP值

如果需要计算mAP值,计算每个类别的AP,除以类别总数即可。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2xGqXUrb-1679840224500)(C:\Users\Lenovo\AppData\Roaming\Typora\typora-user-images\image-20230326220849175.png)]

参考内容

https://blog.csdn.net/qq_37541097?type=blog
https://blog.csdn.net/Bejpse/article/details/124153040

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值