mAP(Mean Average Precision)均值平均精度
正例与负例
现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive),然后我们就能得到如下的四种情况:
(+ +)即实际正例,预测正例
(1)True positives(TP)(+ +): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);
(2)False positives(FP)(- +): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
(3)False negatives(FN)(+ -):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
(4)True negatives(TN)(- -): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
Precision(精确率)
精确率 = 实际正确且判定为正确的总数 / 所有判断为正确的数目(无论该样本原来真假)
即 precision = TP/(TP+FP)
个人理解:机器在所有判定为正确的样本数目中,真正正确的样本数目(模型预测的所有目标中,预测正确的比例)
Recall(召回率)
召回率 = 正确预测样本中实际正样本数 /实际的正样本数
即 Recall = TP/(TP+FN)
个人理解:总共有那么多正样本,模型把这些正样本找出来的比例占多少(所有真实目标中,模型预测正确的目标比例)
ACC(准确率)
ACC 代表 Accuracy,即准确率,准确率表示预测样本中预测正确数占所有样本数的比例,计算公式为:
准确率 = 预测样本中所有被正确分类的样本数 / 所有的样本数
即 ACC = (TP+TN)/(TP+FP+TN+FN)
mAP简介(可以直接看这个,上面的很繁琐)
取不同的阈值(卡Confidence),计算在该阈值下的Precision和Recall
然后画出P-R图,计算出图中蓝色区域面积即是该类别AP值
如果需要计算mAP值,计算每个类别的AP,除以类别总数即可。
参考内容
https://blog.csdn.net/qq_37541097?type=blog
https://blog.csdn.net/Bejpse/article/details/124153040