题目
题解
动态规划。
整体思路:
dp[i][j]
表示用i
个乘号,对前j
个数进行操作能得到的最大值;(看完dp
数组如何定义后,可以尝试自己实现)
num[i][j]
表示第i
个数到第j
个数构成的十进制数的值;
转移方程:dp[i][j] = max(dp[i][j], dp[i-1][k-1]*num[k][j])
,其中k
是在枚举乘号的位置,k = i+1 ~ j
初始条件:dp[0][i] = num[1][i], dp[1][1] = 1
思考过程(以下单纯是为了记录自己的思考过程,读者自行选择忽略与否):
最开始想到了其他的两种定义dp
数组的方式:
dp[i][j]
表示用i
个乘号,第j
个位置为最后一个乘号能得到的最大值;dp[i][j][k]
表示用i
个乘号,第j
个位置为最后一个乘号,前k
个数能得到的最大值;
第一种只让最后一个乘号位于第j
个位置上,显然会少很多情况,比如有可能正确答案是xxx * xx * xxx
这样分割,但是此转移方程只能求出xxxxxxx * x
剩下两个乘号随便放的情况下构成数的最大值,显然这不包含正解。(其中x
为数字,*
为乘号)
第二种为了解决第一种出现的问题,我多加了一维,后两维分别控制最后一个乘号的位置和最后一个数的位置,这样确实没问题,但我在写循环的时候发现要写四层循环,其中两层几乎一样,仔细一看才发现原来根本不需要第二维,因此我就将第二维去掉了,就有了正确的定义方式。(这其中的思考过程比较复杂,就不叙述了)
代码
#include<bits/stdc++.h>
using namespace std;
const int M = 10, N = 100;
int dp[M][N], n, m, num[N][N];
string s;
int main()
{
cin>>n>>m>>s;
s = '.'+s;
for(int i = 1;i <= n;i ++)
for(int j = i;j <= n;j ++)
num[i][j] = num[i][j-1]*10 + (s[j]-'0');
for(int i = 1;i <= n;i ++) dp[0][i] = num[1][i];
dp[1][1] = 1;
for(int i = 1;i <= m;i ++)
for(int j = i+1;j <= n;j ++)
for(int k = i+1;k <= j;k ++)
dp[i][j] = max(dp[i][j], dp[i-1][k-1]*num[k][j]);
cout << dp[m][n] << endl;
return 0;
}
初稿(读者忽略)
#include<bits/stdc++.h>
using namespace std;
const int M = 10, N = 100;
int dp[M][N], n, m;
string s;
int main()
{
cin>>n>>m>>s;
s = '.'+s;
for(int i = 1;i <= n;i ++) dp[0][i] = dp[0][i-1]*10+(s[i]-'0');
dp[1][1] = 1;
for(int i = 1;i <= m;i ++)
for(int j = i+1, sum = 0;j <= n;j ++, sum = 0)
for(int k = j, tmp = 1;k >= i+1;k --, tmp *= 10) {
sum = (s[k]-'0')*tmp + sum;
dp[i][j] = max(dp[i][j], dp[i-1][k-1]*sum);
}
// for(int i = 1;i <= m;i ++, cout << endl)
// for(int j = 1;j <= n;j ++)
// cout << dp[i][j] <<' ';
cout << dp[m][n] << endl;
return 0;
}