蓝桥杯算法训练VIP-乘积最大

题目

题目链接

题解

动态规划。


整体思路:
dp[i][j]表示用i个乘号,对前j个数进行操作能得到的最大值;(看完dp数组如何定义后,可以尝试自己实现)
num[i][j]表示第i个数到第j个数构成的十进制数的值;
转移方程:dp[i][j] = max(dp[i][j], dp[i-1][k-1]*num[k][j]),其中k是在枚举乘号的位置,k = i+1 ~ j
初始条件:dp[0][i] = num[1][i], dp[1][1] = 1


思考过程(以下单纯是为了记录自己的思考过程,读者自行选择忽略与否):

最开始想到了其他的两种定义dp数组的方式:

  1. dp[i][j]表示用i个乘号,第j个位置为最后一个乘号能得到的最大值;
  2. dp[i][j][k]表示用i个乘号,第j个位置为最后一个乘号,前k个数能得到的最大值;

第一种只让最后一个乘号位于第j个位置上,显然会少很多情况,比如有可能正确答案是xxx * xx * xxx这样分割,但是此转移方程只能求出xxxxxxx * x剩下两个乘号随便放的情况下构成数的最大值,显然这不包含正解。(其中x为数字,*为乘号)

第二种为了解决第一种出现的问题,我多加了一维,后两维分别控制最后一个乘号的位置和最后一个数的位置,这样确实没问题,但我在写循环的时候发现要写四层循环,其中两层几乎一样,仔细一看才发现原来根本不需要第二维,因此我就将第二维去掉了,就有了正确的定义方式。(这其中的思考过程比较复杂,就不叙述了)

代码

#include<bits/stdc++.h>
using namespace std;
const int M = 10, N = 100;

int dp[M][N], n, m, num[N][N];
string s;

int main()
{
	cin>>n>>m>>s;
	s = '.'+s;
	
	for(int i = 1;i <= n;i ++)
	for(int j = i;j <= n;j ++)
	num[i][j] = num[i][j-1]*10 + (s[j]-'0');
	
	for(int i = 1;i <= n;i ++) dp[0][i] = num[1][i];
	dp[1][1] = 1;
		
	for(int i = 1;i <= m;i ++)
	for(int j = i+1;j <= n;j ++) 
	for(int k = i+1;k <= j;k ++) 
	dp[i][j] = max(dp[i][j], dp[i-1][k-1]*num[k][j]);
	
	cout << dp[m][n] << endl;
	
	return 0;
}

初稿(读者忽略)

#include<bits/stdc++.h>
using namespace std;
const int M = 10, N = 100;

int dp[M][N], n, m;
string s;

int main()
{
	cin>>n>>m>>s;
	s = '.'+s;
	
	for(int i = 1;i <= n;i ++) dp[0][i] = dp[0][i-1]*10+(s[i]-'0');
	dp[1][1] = 1;
		
	for(int i = 1;i <= m;i ++)
	for(int j = i+1, sum = 0;j <= n;j ++, sum = 0) 
	for(int k = j, tmp = 1;k >= i+1;k --, tmp *= 10) {
		sum = (s[k]-'0')*tmp + sum;
		dp[i][j] = max(dp[i][j], dp[i-1][k-1]*sum);
	} 	
	
//	for(int i = 1;i <= m;i ++, cout << endl)
//	for(int j = 1;j <= n;j ++)
//	cout << dp[i][j] <<' ';
	
	cout << dp[m][n] << endl;
	
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值