欧拉函数模板

欧拉函数: φ ( n ) \varphi(n) φ(n)表示 1 ∼ n 1\sim n 1n中与 n n n互素的个数。
互素:两个整数的公因子只有 1 1 1

假设 n n n 可以表示为 n = P 1 α 1 ∗ P 2 α 2 ∗ . . . ∗ P k α k n=P_1^{\alpha_1}*P_2^{\alpha_2}*...*P_k^{\alpha_k} n=P1α1P2α2...Pkαk,其中 P i P_i Pi 均为 n n n 的质因子,那么存在结论 φ ( n ) = n ∗ ( 1 − 1 P 1 ) ∗ ( 1 − 1 P 2 ) ∗ . . . ∗ ( 1 − 1 P k ) \varphi(n) = n*(1-\frac{1}{P_1})*(1-\frac{1}{P_2})*...*(1-\frac{1}{P_k}) φ(n)=n(1P11)(1P21)...(1Pk1)


计算 φ ( n ) \varphi(n) φ(n)

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n;
	cin >> n;
	int ans = n;
	for (int i = 2;i <= n / i;i ++) {
		if (n % i == 0) {
			ans = ans / i * (i - 1); // 避免出现小数 
			while (n % i == 0) n /= i;
		}
	}
	if (n > 1) ans = ans / n * (n - 1);
	cout << ans << endl;

	return 0;
}


计算 1 ∼ n 1\sim n 1n 的欧拉函数之和:

可由线性筛法(欧拉筛 / 线性筛)同步求得:

  1. 初始化 φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1

  2. 当枚举到的 i i i 是素数时。一个素数的与之互素的个数为 1 ∼ i − 1 1 \sim i-1 1i1,即 i − 1 i-1 i1 个,即

    φ ( i ) = i − 1 \varphi(i)=i-1 φ(i)=i1

  3. 当枚举到的 i i i 满足 i % P j = 0 i\%P_j=0 i%Pj=0,其中 P j P_j Pj 为线性筛法中第二层循环中枚举到的已保存的素数。 i i i 可以表示为 P 1 α 1 ∗ . . . ∗ P t α t P_1^{\alpha_1}*...*P_t^{\alpha_t} P1α1...Ptαt,其中 P P P i i i 的质因子,由于 i % P j = = 0 i\%P_j==0 i%Pj==0,所以 P j P_j Pj 也是 i i i 的质因子,因此 P j ≤ P t P_j ≤ P_t PjPt

    P j ∗ i = P 1 α 1 ∗ . . . ∗ P j α j + 1 ∗ . . . ∗ P t α t P_j*i = P_1^{\alpha_1}*...*P_j^{\alpha_j+1}*...*P_t^{\alpha_t} Pji=P1α1...Pjαj+1...Ptαt

    φ ( i ) = i ∗ ( 1 − 1 P 1 ) ∗ ( 1 − 1 P 2 ) ∗ . . . ∗ ( 1 − 1 P t ) \varphi(i)=i*(1-\frac{1}{P_1})*(1-\frac{1}{P_2})*...*(1-\frac{1}{P_t}) φ(i)=i(1P11)(1P21)...(1Pt1)

    由于欧拉函数只与质因子的种类有关而与每个质因子的个数无关,故

    φ ( P j ∗ i ) = P j ∗ i ∗ ( 1 − 1 P 1 ) ∗ ( 1 − 1 P 2 ) ∗ . . . ∗ ( 1 − 1 P t ) \varphi(P_j*i)=P_j*i*(1-\frac{1}{P_1})*(1-\frac{1}{P_2})*...*(1-\frac{1}{P_t}) φ(Pji)=Pji(1P11)(1P21)...(1Pt1)

    进一步表示为

    φ ( P j ∗ i ) = φ ( i ) ∗ P j \varphi(P_j*i)=\varphi(i)*P_j φ(Pji)=φ(i)Pj

  4. 当枚举到的 i i i 满足 i % P j ≠ 0 i\%P_j ≠0 i%Pj=0。由于 P j P_j Pj 是素数,所以 P j ∗ i P_j*i Pji i i i 多了一个素数 P j P_j Pj

    P j ∗ i = P 1 α 1 ∗ . . . ∗ P t α t ∗ P j P_j*i=P_1^{\alpha_1}*...*P_t^{\alpha_t}*P_j Pji=P1α1...PtαtPj,故

    φ ( P j ∗ i ) = P j ∗ i ∗ ( 1 − 1 P 1 ) ∗ ( 1 − 1 P 2 ) ∗ . . . ∗ ( 1 − 1 P t ) ∗ ( 1 − 1 P j ) \varphi(P_j*i)=P_j*i*(1-\frac{1}{P_1})*(1-\frac{1}{P_2})*...*(1-\frac{1}{P_t})*(1-\frac{1}{P_j}) φ(Pji)=Pji(1P11)(1P21)...(1Pt1)(1Pj1)

    进一步表示为

    φ ( P j ∗ i ) = P j ∗ φ ( i ) ∗ ( 1 − 1 P j ) = φ ( i ) ∗ ( P j − 1 ) \varphi(P_j*i)=P_j*\varphi(i)*(1-\frac{1}{P_j})=\varphi(i)*(P_j-1) φ(Pji)=Pjφ(i)(1Pj1)=φ(i)(Pj1).

以上就是我们要加的四行代码。


#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e6+10;

int phi[N]; // phi[i] 表示 i 的欧拉函数值
int p[N], cnt; // 统计素数
int vis[N];
LL ans, n; 

int main()
{
	cin >> n;
	phi[1] = 1; // 情况1,注意初始化! 
	for (int i = 2;i <= n;i ++) { // 线性筛 2~n 
		if (!vis[i]) { // 说明i是素数 
			phi[i] = i - 1; // 情况2
			p[cnt++] = i;
		}
		for (int j = 0;j < cnt;j ++) {
			if (i * p[j] > n) break;
			vis[i * p[j]] = 1;
			if (i % p[j] == 0) {
				phi[i * p[j]] = phi[i] * p[j]; // 情况3
				break;
			}
			phi[i * p[j]] = phi[i] * (p[j] - 1); // 情况4 
		}
	} 
	
	for (int i = 1;i <= n;i ++)
		ans += phi[i]; 

	cout << ans << endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值