神经网络的变种目前有,
如误差反向传播(Back Propagation,BP)神经网路、
概率神经网络、
RNN-循环神经网络
DNN-深度神经网络
CNN-卷积神经网络(-适用于图像识别)、
LSTM-时间递归神经网络(-适用于语音识别)等。详细文章
但最简单且原汁原味的神经网络则是
多层感知器(Muti-Layer Perception ,MLP),只有理解经典的原版,才能更好的去理解功能更加强大的现代变种。

MLP神经网络的结构和原理
最典型的MLP包括包括三层:输入层、隐层和输出层,MLP神经网络不同层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。



本文详细介绍了神经网络的几种变种,包括RNN(循环神经网络)、DNN(深度神经网络)、CNN(卷积神经网络)和LSTM(长短期记忆网络)。同时,提到了多层感知器(MLP)作为神经网络的经典模型,其结构包含输入层、隐藏层和输出层,通过权重、偏置和激活函数实现非线性映射。以数字识别为例,解释了神经网络如何处理输入和输出。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



