sunshine_guoqiang
码龄6年
  • 477,485
    被访问
  • 324
    原创
  • 2,886
    排名
  • 1,305
    粉丝
关注
提问 私信

个人简介:研究方向 AR/VR SLAM 三维重建欢迎讨论&交流

  • 加入CSDN时间: 2016-09-19
博客简介:

格物致知

博客描述:
笃学尚行,至于至善。专注!专注!专注!
查看详细资料
  • 5
    领奖
    总分 1,387 当月 196
个人成就
  • 博客专家认证
  • 获得315次点赞
  • 内容获得176次评论
  • 获得1,993次收藏
创作历程
  • 56篇
    2022年
  • 107篇
    2021年
  • 85篇
    2020年
  • 24篇
    2019年
  • 53篇
    2018年
  • 14篇
    2017年
成就勋章
TA的专栏
  • SLAM
    40篇
  • ORBSLAM
    16篇
  • DSO/SVO
    7篇
  • GSTAM
    4篇
  • C++
    43篇
  • SmartPoint
    7篇
  • MultiThread
    6篇
  • Linux
    10篇
  • OpenCV
    34篇
  • python
    7篇
  • CI
    5篇
  • codecheck
    2篇
  • Git
    4篇
  • a/gdb
    3篇
  • Valgrind
    6篇
  • Neon
    1篇
  • ROS
    6篇
  • cmake
    5篇
  • MATLAB
    17篇
  • AR
    8篇
  • 三维重建
    9篇
  • 图像处理
    29篇
  • Android
    1篇
  • 工具
    14篇
  • Math
    4篇
  • 模式与设计
    4篇
  • 操作系统
    4篇
  • 数据结构与算法
    16篇
  • 目标检测
    4篇
  • Face
    2篇
  • Video
    3篇
兴趣领域 设置
  • 人工智能
    计算机视觉人工智能自动驾驶图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SLAM——Eigen函数库:矩阵块运算,block操作

1、子矩阵操作简介子矩阵操作又称块操作,在矩阵运算中,子矩阵的提取和操作应用也十分广泛。因此Eigen中也提供了相关操作的方法。提取的子矩阵在操作过程中既可以用作左值也可以用作block of size (p,q) ,starting at (i,j)。matrix.block(i,j,p,q);matrix.block<p,q>(i,j);2. 2、块操作的一般使用方法在Eigen中最基本的快操作运算是用.block()完成的。提取的子矩阵同样分为动态大小和固定大小。块操作
原创
发布博客 前天 19:35 ·
5 阅读 ·
0 点赞 ·
0 评论

【C++】find()函数用法查找

1. 查找指向指定元素的迭代器find函数主要实现的是在容器内查找指定的元素,并且这个元素必须是基本数据类型的。查找成功返回一个指向指定元素的迭代器,查找失败返回end迭代器。2. 在数组中查找:# include <iostream># include <vector># include <algorithm> //注意要包含该头文件using namespace std;int main(){ int nums[] = {
原创
发布博客 前天 14:58 ·
8 阅读 ·
0 点赞 ·
0 评论

【C++】std::numeric_limits 类型对应最值查询

1. std::numeric_limits 类型对应最值查询C++ 工具库 类型支持 std::numeric_limits定义于头文件 template< class T > class numeric_limits;numeric_limits 类模板提供查询各种算术类型属性的标准化方式(例如 int 类型的最大可能值是 std::numeric_limits::max() )。通过 numeric_limits 模板的特化提供此信息。标准库为所有算术类型制定可用的特化:定义于
原创
发布博客 前天 07:32 ·
11 阅读 ·
0 点赞 ·
0 评论

【PR】PR剪辑视频编辑软件视频去字幕

方式1:缩放方法2:覆盖裁剪方式3:高斯模糊方法4.局部背景素材替换法(主要适合固定背景的,相对高级的手法,暂时不学)5.参考https://www.bilibili.com/video/BV194411W7H2
原创
发布博客 2022.05.13 ·
30 阅读 ·
0 点赞 ·
2 评论

【PR】PR剪辑视频片段并保存

原创
发布博客 2022.05.12 ·
28 阅读 ·
0 点赞 ·
0 评论

【ANDROID 】交叉编译链工具

ANDROID 交叉编译链工具下载不受支持的 NDK 下载ORB_SLAM2在Android上的移植过程 (Android Studio 2.2+OpenCV 3.2+Cmake)
原创
发布博客 2022.05.12 ·
137 阅读 ·
0 点赞 ·
0 评论

【PR】PR在有原视频的情况下去除字幕视频水印学习记录

1.导入视频素材参考视频链接:https://www.zhihu.com/question/328850413/answer/2403445512
原创
发布博客 2022.05.11 ·
36 阅读 ·
0 点赞 ·
0 评论

MSCKF(S-MSCKF)

笔记:https://ug98gs7tbw.feishu.cn/docs/doccnr5sB0Fvc27b1SZjoGPpEUc#论文:https://arxiv.org/abs/1712.00036代码:https://github.com/KumarRobotics/msckf_vio
原创
发布博客 2022.05.08 ·
120 阅读 ·
0 点赞 ·
0 评论

VIOSLAM 综述

文章目录1.VIO 松耦合/紧耦合。2. 相机和IMU的缺点及互补性3. VIO融合算法流程及其模块分解:4. VIO 算法核心:5. 实验结果与总结:6. 参考文献:1.VIO 松耦合/紧耦合。Visual-Inertial Odometry(VIO)即视觉惯性里程计,有时也叫视觉惯性系统(VINS,visual-inertial system),是融合相机和IMU数据实现SLAM的算法,根据融合框架的不同又分为松耦合和紧耦合。其中VO(visual odometry)指仅视觉的里程计,T表示
原创
发布博客 2022.05.08 ·
726 阅读 ·
2 点赞 ·
0 评论

【C++】深度探索C++对象模型

1.什么是C++对象模型:语言中直接支持面向对象程序设计的部分,对于各个支持的底层实现机制.本书是C++第一套编译器cfront的设计者所写(了解C++对象模型, 有助于在语言本身以及面向对象观念两方面层次提升.).explicit(明确出现于C++程序代码).implicit(隐藏于程序代码背后).2. 关于对象每个非内联(non-inline)成员函数只会诞生一个函数实例. 而内联函数会在每个使用者身上产生一个函数实例.C++在布局以及存取时间上的额外负担主要由虚(virtual)引
原创
发布博客 2022.05.08 ·
10 阅读 ·
0 点赞 ·
0 评论

C++ this 指针

在 C++ 中,每一个对象都能通过 this 指针来访问自己的地址。this 指针是所有成员函数的隐含参数。因此,在成员函数内部,它可以用来指向调用对象。1. C++ Primer Page 258引入 this: 是 C++ 中的一个关键字,也是一个 const 指针,它指向当前对象,通过它可以访问当前对象的所有成员。当我们调用成员函数时,实际上是替某个对象调用它。成员函数通过一个名为 this 的额外隐式参数来访问调用它的那个对象,当我们调用一个成员函数时,用请求该函数的对象地址初始化 thi
原创
发布博客 2022.05.08 ·
4 阅读 ·
0 点赞 ·
0 评论

Markdown如何修改文字体及颜色

Markdown是一种可以使用普通文本编辑器编写的标记语言,通过类似HTML的标记语法,它可以使普通文本内容具有一定的格式。但是它本身是不支持修改字体、字号与颜色等功能的!CSDN-markdown编辑器是其衍生版本,扩展了Markdown的功能(如表格、脚注、内嵌HTML等等)!对,就是内嵌HTML,接下来要讲的功能就需要使用内嵌HTML的方法来实现。1.字体、字号与颜色<font face="黑体">我是黑体字</font><font face="微软雅黑">
原创
发布博客 2022.05.08 ·
6 阅读 ·
0 点赞 ·
0 评论

常见容器及操作复杂度

set、multiset、map、multimap特点:底层实现是红黑树,键值有序,set 和 map 键不可重复,而 multiset 和 multimap 可重复;操作复杂度:插入、删除、查找都为O(logN);unordered_set,unordered_map,unordered_multiset,unordered_multimap特点:底层实现是哈希表,键值无序,unordered_set 和 unordered_map 键不可重复,而另外两个可以重复;操作复杂度:插入、..
原创
发布博客 2022.05.06 ·
86 阅读 ·
0 点赞 ·
0 评论

【C++】C++格式化输出/输出格式控制/输出精度控制

文章目录1. google c++规范2. 隐式类型转换 (构造函数的隐式调用)3. C++ 参考手册如下解释1. google c++规范explicit关键字只需用于类内的单参数构造函数前面。由于无参数的构造函数和多参数的构造函数总是显示调用,这种情况在构造函数前加explicit无意义。google的c++规范中提到explicit的优点是可以避免不合时宜的类型变换,缺点无。所以google约定所有单参数的构造函数都必须是显示的,只有极少数情况下拷贝构造函数可以不声明称explicit。例如作为
原创
发布博客 2022.05.05 ·
51 阅读 ·
0 点赞 ·
0 评论

git系列之rebase变基与commit压缩

​1. 方法1:1 git cherry-pick替代git rebase,可以作为一种的rebase的方法//替代rebase的一种新的方法,比较好用,记录以下1.第一步将修改的代码,提交后利用squash压缩成一个提交2.第二步,分支更新到master,利用git cherry-pick 摘取压缩后的提交3.注意,git cherry-pick出现矛盾后,需要手动搜索冲突代码,没有办法直接看到冲突的地方4.提交后,查看检验格式域代码 ​​​​​​​​​​​​​2. 方法2:git–r
原创
发布博客 2022.05.05 ·
104 阅读 ·
0 点赞 ·
0 评论

git系列之revert回滚

1. Git 使用revert回滚已提交的commit在git使用中如果提交错误的代码至远程服务器,可以使用git revert 命令回滚单次commit并且不影响其他commit。回滚最新一次的提交记录: git revert HEAD回滚前一次的提交记录 : git revert HEAD^对历史上的commit回滚: git revert 回滚历史commit很容易产生文件冲突,需要做好冲突处理。使用SourceTree进行commit revert在准备revert 的commit上右
原创
发布博客 2022.05.05 ·
490 阅读 ·
0 点赞 ·
0 评论

CVPR2020 论文

1. 点云/3D重建/SLAMD3Feat: Joint Learning of Dense Detection and Description of 3D Local Features论文:https://arxiv.org/abs/2003.03164代码:https://github.com/XuyangBai/D3FeatRPM-Net: Robust Point Matching using Learned Features论文:https://arxiv.org/abs/2003.13.
原创
发布博客 2022.05.05 ·
20 阅读 ·
0 点赞 ·
0 评论

DSO(Direct Sparse Odometry)

DSO(Direct Sparse Odometry)文章目录1. 简述2. 概述3. 框架流程3.1 代码框架与数据表示3.2 VO流程4. DSO详细介绍4.1 残差的构成与雅可比4.2 滑动窗口的维护与边缘化4.3 零空间,FEJ4.4 其他零散的模块和算法5. 光度标定6. 评述7. 资料与参考文献:1. 简述代码:实验室主页:参考:高翔博士的分享与解读慕尼黑工业大学(Technical University of Munich, TUM)计算机视觉实验室的雅各布.恩格尔(Jako
原创
发布博客 2022.05.04 ·
251 阅读 ·
0 点赞 ·
2 评论

视觉/视觉惯性SLAM最新综述:领域进展、方法分类与实验对比

Visual and Visual-Inertial SLAM: State of the Art, Classification,and Experimental Benchmarking作者:Myriam Servières, Valérie Renaudin, Alexis Dupuis, and Nicolas Antigny论文地址: https://www.hindawi.com/journals/js/2021/2054828/摘要:SLAM技术现在被许多应用广泛采用,研究人员已经就
原创
发布博客 2022.05.03 ·
171 阅读 ·
0 点赞 ·
0 评论

SLAM++ 增量式BA优化库

incSLAM++是3DV 2017最佳论文,源文件网址 https://sourceforge.net/p/slam-plus-plus/wiki/Home/incSLAM++有两个创新点:一是增量式Schur补更新。如果delta更新是稀疏的,则采用增量式Schur补来求解非线性最小二乘问题,即增量式BA问题,会缩短计算时间。求解不同关键帧之间的位姿和每帧上的点即求解增量式BA(解不是全局的),就是求解如下非线性最小二乘问题在每次迭代时,在初始点附近利用泰勒展开进行线性化,得到如下最小二乘问
原创
发布博客 2022.05.03 ·
14 阅读 ·
0 点赞 ·
0 评论
加载更多