正交矩阵和一种简单基础的Gram-Schmidt斯密特正交化方法

本文介绍了正交矩阵的定义及其性质,重点讲述了Gram-Schmidt正交化过程,通过实例展示了如何将一组向量转化为标准正交向量,并提供了计算步骤。内容涉及线性代数和算法,对机器学习也有一定帮助。
摘要由CSDN通过智能技术生成

定义

Q为方阵且:
Q T Q = I , Q T = Q − 1 Q^{T} Q=I, Q^{T}=Q^{-1} QTQ=I,QT=Q1
则Q为正交矩阵。
组成Q的向量有:
q i T q j = { 0 i ≠ j  (ortho)  1 i = j (  normal  ) q_{i}^{T} q_{j}=\left\{\begin{array}{cc} 0 & i \neq j & \text { (ortho) } \\ 1 & i=j & (\text { normal }) \end{array}\right. qiTqj={ 01i=ji=j (ortho) ( normal )

求正交矩阵

Gram-Schmidt标准正交化过程是一种将一组向量转换成一组标准正交向量的方法。它基本上从标准化考虑的第一个向量开始,然后迭代地重写剩下的向量,用它们自己减去已经标准化的向量的乘积。例如,转换的列向量:
A = [ 1 2 1 0 2 0 2 3 1 1 1 0 ] A=\left[\begin{array}{lll} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{array}\right] A=102122311010
变成标准正交列向量:
A = [ 6 6 2 6 2 3 0 2 2 3 − 1 3 6 3 0 0 6 6 − 2 6 − 2 3 ] A=\left[\begin{array}{ccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{6} & \frac{2}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & \frac{-1}{3} \\ \frac{\sqrt{6}}{3} & 0 & 0 \\ \frac{\sqrt{6}}{6} & \frac{-\sqrt{2}}{6} & \frac{-2}{3} \end{array}\right] A=66 036 66 62

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值