定义
Q为方阵且:
Q T Q = I , Q T = Q − 1 Q^{T} Q=I, Q^{T}=Q^{-1} QTQ=I,QT=Q−1
则Q为正交矩阵。
组成Q的向量有:
q i T q j = { 0 i ≠ j (ortho) 1 i = j ( normal ) q_{i}^{T} q_{j}=\left\{\begin{array}{cc} 0 & i \neq j & \text { (ortho) } \\ 1 & i=j & (\text { normal }) \end{array}\right. qiTqj={
01i=ji=j (ortho) ( normal )
求正交矩阵
Gram-Schmidt标准正交化过程是一种将一组向量转换成一组标准正交向量的方法。它基本上从标准化考虑的第一个向量开始,然后迭代地重写剩下的向量,用它们自己减去已经标准化的向量的乘积。例如,转换的列向量:
A = [ 1 2 1 0 2 0 2 3 1 1 1 0 ] A=\left[\begin{array}{lll} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{array}\right] A=⎣⎢⎢⎡102122311010⎦⎥⎥⎤
变成标准正交列向量:
A = [ 6 6 2 6 2 3 0 2 2 3 − 1 3 6 3 0 0 6 6 − 2 6 − 2 3 ] A=\left[\begin{array}{ccc} \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{6} & \frac{2}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & \frac{-1}{3} \\ \frac{\sqrt{6}}{3} & 0 & 0 \\ \frac{\sqrt{6}}{6} & \frac{-\sqrt{2}}{6} & \frac{-2}{3} \end{array}\right] A=⎣⎢⎢⎢⎡660366662