判断子序列

在这里插入图片描述

(这道题可以用双指针的思路来实现,时间复杂度就是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题也是对后面要讲解的编辑距离的题目打下基础。

动态规划五部曲分析如下:

确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

if (s[i - 1] == t[j - 1]) t中找到了一个字符在s中也出现了
if (s[i - 1] != t[j - 1]) 相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1。

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:
在这里插入图片描述

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

确定遍历顺序

同理从从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

如图所示:在这里插入图片描述

举例推导dp数组

以示例一为例,输入:s = “abc”, t = “ahbgdc”,dp状态转移图如下:
在这里插入图片描述
dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
        int res=0;
        for(int ii=1;ii<=s.size();ii++){
            for(int jj=1;jj<=t.size();jj++){
                if(s[ii-1]==t[jj-1]) dp[ii][jj]=dp[ii-1][jj-1]+1;
                else dp[ii][jj]=max(dp[ii-1][jj],dp[ii][jj-1]);
                if(dp[ii][jj]>res) res=dp[ii][jj];
            }
        }
        if(res==s.size()) return true;
        else return false;
    }
};

优化

时间复杂度:O(n * m)
空间复杂度:O(n * m)
class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
        for(int ii=1;ii<=s.size();ii++){
            for(int jj=1;jj<=t.size();jj++){
                if(s[ii-1]==t[jj-1]) dp[ii][jj]=dp[ii-1][jj-1]+1;
                else dp[ii][jj]=dp[ii][jj-1];
            }
        }
        if(dp[s.size()][t.size()]==s.size()) return true;
        else return false;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值