题目在这:https://leetcode-cn.com/problems/is-subsequence/
思路分析:
之前写过这道题,使用的是 双指针法,比较简单,感兴趣的可以去看看.
392. 判断子序列 (双指针法)
今天再次更新这道题是因为最近在学习动态规划。
使用动态规划做这道题。
1.确定dp数组的含义:
dp[i][j] 表示 以i-1为结尾的s串,和以j-1为结尾的t串 的子序列长度。
2.确定状态转移公式:
本题要从t中找s。
-
如果
s[i-1] == t[j-1]:
- 则说明找到了相同的元素,由于dp[i][j]记录的是子序列的长度,所以此时相较于之前记录的dp要加1. 即
dp[i][j] = dp[i-1][j-1] +1
- 则说明找到了相同的元素,由于dp[i][j]记录的是子序列的长度,所以此时相较于之前记录的dp要加1. 即
-
如果
s[i-1]!= t[j-1]:
- 则说明此时的t需要删除元素,即此时指向t的指针往后挪动,并没有改变子序列的长度,所以dp数组所记录的长度也不改变。此时
dp[i][j] = dp[i][j-1]
- 则说明此时的t需要删除元素,即此时指向t的指针往后挪动,并没有改变子序列的长度,所以dp数组所记录的长度也不改变。此时
配合下面这张图理解。
这里再简单的说一下,每个方格的左上角记录的是 s串上一个元素和t串上一个元素的子序列长度,每个方格的左边记录的是当前s串元素和t串的上一个元素的子序列长度。
所以才有了递推公式,相等取左上角加一,不相等取左边的值。
注意:这里所说的上一个元素是指从开头到上一个元素的子序列
3.初始化dp数组
我们将第一行和第一列都初始化成0,因为这道题要判断s是否是t的子序列,所以这两行是没有意义的,初始化成0.最后只需要判断dp最后一个元素长度是否是s的长度就行了。
4.确定遍历顺序
显然我们要按住s串去遍历t串,拿每一个s串的元素去t串里遍历。当s串遍历完成,则结束程序,
所以外围循环是循环s串,内层循环t串。
完整代码
class Solution:
def isSubsequence(self, s: str, t: str) -> bool:
dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
# 二维列表推导式建立二维数组,先一维 后二维,即用一维去二维里遍历,看有几个。
print(dp)
for i in range(1,len(s)+1):
for j in range(1,len(t)+1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1]+1
else:
dp[i][j] = dp[i][j-1]
print(dp)
return True if dp[-1][-1] == len(s) else False