d[i]为字符0~i划分成的最小回文串个数,状态转移方程d[i]=min{d[j]+1|s[j+1~i]是回文串}。
运用了对函数调用结果进行缓存的优化技术。将算过的字符串s[i~j]是否为回文串结果存放在p数组中,vis数组则表示是否访问过该字符串。如果访问过,则返回p中对应结果。
参考刘汝佳老师代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 1000 + 5;
int n, kase, vis[maxn][maxn], p[maxn][maxn], d[maxn];
char s[maxn];
int is_palindrome(int i, int j) {
if(i >= j) return 1;
if(s[i] != s[j]) return 0;
if(vis[i][j] == kase) return p[i][j];
vis[i][j] = kase;
p[i][j] = is_palindrome(i+1, j-1);
return p[i][j];
}
int main() {
int T;
scanf("%d", &T);
memset(vis, 0, sizeof(vis));
for(kase = 1; kase <= T; kase++) {
scanf("%s", s+1);
n = strlen(s+1);
d[0] = 0;
for(int i = 1; i <= n; i++) {
d[i] = i+1;
for(int j = 0; j < i; j++)
if(is_palindrome(j+1, i)) d[i] = min(d[i], d[j] + 1);
}
printf("%d\n", d[n]);
}
return 0;
}