模型训练
模型训练一般分为四个步骤:
- 构建数据集。
- 定义神经网络模型。
- 定义超参、损失函数及优化器。
- 输入数据集进行训练与评估。
现在我们有了数据集和模型后,可以进行模型的训练与评估。
构建数据集
首先从数据集 Dataset加载代码,构建数据集。
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
def datapipe(path, batch_size):
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = MnistDataset(path)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
train_dataset = datapipe('MNIST_Data/train', batch_size=64)
test_dataset = datapipe('MNIST_Data/test', batch_size=64)
定义神经网络模型
从网络构建中加载代码,构建一个神经网络模型。
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
定义超参、损失函数和优化器
超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:
w t + 1 = w t − η 1 n ∑ x ∈ B ∇ l ( x , w t ) w_{t+1}=w_{t}-\eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l\left(x, w_{t}\right) wt+1=wt−ηn1x∈B∑∇l(x,wt)
公式中, n n n是批量大小(batch size), η η η是学习率(learning rate)。另外, w t w_{t} wt为训练轮次 t t t中的权重参数, ∇ l \nabla l ∇l为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:
-
训练轮次(epoch):训练时遍历数据集的次数。
-
批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。
-
学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。
epochs = 3
batch_size = 64
learning_rate = 1e-2
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train_loop(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(model, train_dataset)
test_loop(model, test_dataset, loss_fn)
print("Done!")