昇思25天学习打卡营第7天 | 模型训练

1. 模型训练

模型训练一般分为四个步骤:

  1. 构建数据集。
  2. 定义神经网络模型。
  3. 定义超参、损失函数及优化器。
  4. 输入数据集进行训练与评估。

我们有了数据集和模型后,可以进行模型的训练与评估。

1.1 导入依赖

# 导入依赖
# 导入mindspore库,这是华为推出的一个开源深度学习框架,用于构建和训练神经网络。
import mindspore

# 从mindspore库中导入nn模块,这个模块包含了构建神经网络所需的各种层和函数。
from mindspore import nn

# 从mindspore的dataset模块中导入vision和transforms子模块,用于数据变换。
# vision模块提供了一些常用的图像处理方法,如裁剪、翻转等。
# transforms模块提供了一些用于数据增强和预处理的函数。
from mindspore.dataset import vision, transforms
# 从mindspore的dataset模块中导入MnistDataset类,用于加载和解析MNIST数据集。
from mindspore.dataset import MnistDataset

# Download data from open datasets
# 导入download模块中的download函数,用于从互联网上下载公开的数据集。
from download import download

1.2 构建数据集

首先从数据集 Dataset下载数据,构建数据集。

# 定义一个URL变量,指向MindSpore官网提供的MNIST数据集压缩文件的地址
# MNIST是一个手写数字识别的数据集,包含60000个训练样本和10000个测试样本。
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"

# 调用之前导入的download函数,使用该函数从指定的URL下载文件
# 第一个参数是文件的URL
# 第二个参数是下载后文件的保存路径,这里使用了当前目录(".")作为保存路径
# 第三个参数指定了下载文件的类型,这里是"zip"表示下载的是一个ZIP压缩文件
# 第四个参数replace=True表示如果文件已经存在,将会覆盖旧的文件
path = download(url, "./", kind="zip", replace=True)

# 定义一个数据管道函数,用于加载和处理MNIST数据集
# 函数内部首先定义了一系列图像变换,包括缩放、标准化和维度转换。
# 然后,它定义了一个标签变换,将标签数据类型转换为mindspore.int32。
# 接着,函数加载MNIST数据集,并应用这些变换。
# 最后,它将数据集划分为指定批量大小的小批量数据,并返回处理后的数据集。
def datapipe(path, batch_size):
    
    # 创建一个图像变换列表,包括以下步骤:
    # 1. Rescale: 将图像像素值缩放到[0, 1]范围
    # 2. Normalize: 对图像进行标准化处理,使用MNIST数据集的均值和标准差
    # 3. HWC2CHW: 将图像的维度从Height x Width x Channel (HWC)转换为Channel x Height x Width (CHW)
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]

    # 定义一个标签变换,将标签数据类型转换为mindspore.int32
    label_transform = transforms.TypeCast(mindspore.int32)

    # 加载MNIST数据集,指定数据集的路径
    dataset = MnistDataset(path)

    # 对数据集中的图像应用之前定义的图像变换
    dataset = dataset.map(image_transforms, 'image')

    # 对数据集中的标签应用之前定义的标签变换
    dataset = dataset.map(label_transform, 'label')

    # 将数据集划分为批量大小为batch_size的小批量数据
    dataset = dataset.batch(batch_size)

    # 返回处理后的数据集
    return dataset

# 使用datapipe函数创建训练数据集,指定数据集路径和批量大小为64
train_dataset = datapipe('MNIST_Data/train', batch_size=64)

# 使用datapipe函数创建测试数据集,指定数据集路径和批量大小为64
test_dataset = datapipe('MNIST_Data/test', batch_size=64)

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:00<00:00, 98.5MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

1.3 定义神经网络模型

网络构建中加载代码,构建一个神经网络模型。

# 定义一个神经网络类Network,它继承自mindspore.nn.Cell类,用于图像分类任务,例如MNIST手写数字识别。
# 网络结构包括一个展平层(Flatten),它将输入图像展平为一维向量,
# 然后是三个全连接层(Dense),每个全连接层后面跟着一个ReLU激活函数。
# 最后一个全连接层输出10个节点的logits,对应于10个类别的预测。
class Network(nn.Cell):
    

    def __init__(self):
        # 类的初始化方法,调用父类的初始化方法
        super().__init__()
        # 创建一个Flatten层,用于将输入的图像数据展平为一维向量
        self.flatten = nn.Flatten()
        # 创建一个SequentialCell,它包含一个层序列,用于定义神经网络的结构
        # 这个序列包括三个全连接层(Dense),每个全连接层之后是一个ReLU激活函数
        # 第一个全连接层将28*28个输入节点映射到512个节点
        # 第二个全连接层将512个节点映射到512个节点
        # 第三个全连接层将512个节点映射到10个节点,对应于10个类别的输出
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        # 定义网络的前向传播过程
        # 将输入x通过Flatten层展平为一维向量
        x = self.flatten(x)
        # 将展平后的向量通过之前定义的层序列(全连接层和ReLU激活函数)
        logits = self.dense_relu_sequential(x)
        # 返回最后一个全连接层的输出,即模型的logits(未归一化的预测值)
        return logits

# 创建Network类的实例,即构建了一个可以用于训练和预测的神经网络模型
model = Network()

1.4 定义超参、损失函数和优化器

1.4.1 超参

超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:

w t + 1 = w t − η 1 n ∑ x ∈ B ∇ l ( x , w t ) w_{t+1}=w_{t}-\eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l\left(x, w_{t}\right) wt+1=wtηn1xBl(x,wt)

这个公式的含义是权重向量 w w w在时间步 t t t t + 1 t+1 t+1的更新。是通过计算学习率乘以批量B中所有样本在权重 w t w_t wt下,损失函数 l l l对输入 x x x的平均梯度得到的。

公式中, n n n是批量 B B B中的样量数量,即批量大小(batch size), η η η是学习率(learning rate)。另外, w t w_{t} wt为训练轮次 t t t中的权重参数, ∇ l \nabla l l为损失函数的导数。除了梯度本身,这几个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:

  • 训练轮次(epoch):训练时遍历数据集的次数。

  • 批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size可以有效提高模型精度、全局收敛

  • 学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。学习率应该足够小,以确保参数更新的方向是逐渐逼近最优解的;但同时也要足够大,以避免收敛过慢。常用的学习率有如下几种:

    • 固定学习率:这种方法简单直接,但是可能不够灵活,常见的固定学习率包括0.1、0.01等。
    • 自适应学习率:这种方法可以根据训练过程中的误差或梯度信息动态调整学习率。例如,Adam优化器会根据梯度的方差自动调整学习率。
    • 阶梯学习率:这种方法将学习过程分为多个阶段,每个阶段采用不同的学习率。例如,开始时可以使用较大的学习率快速收敛,然后逐渐减小学习率以防止过拟合。
# 设置训练过程中的epochs数量,3意味着模型将训练三次。
# 增加epoch的数量可以增加模型的训练时间,但也可能提高模型的性能。
epochs = 3
# 设置每个批次的样本数量
# 较小的批量大小可能会导致训练过程更加不稳定,但可能有助于防止过拟合。
# 较大的批量大小可能会提供更稳定的梯度估计,但需要更多的内存。
batch_size = 64
# 设置学习率,1e-2是科学计数法表示的0.01
# 这是一个相对较高的学习率,通常在训练初期使用较高的学习率可以帮助模型快速收敛,
# 但随着训练的进行,可能会需要减小学习率以获得更好的性能。
learning_rate = 1e-2

1.4.2 损失函数

损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。

常见的损失函数包括用于回归任务的nn.MSELoss(均方误差损失函数)和用于分类的nn.NLLLoss(负对数似然损失函数)等。 nn.CrossEntropyLoss 结合了nn.LogSoftmaxnn.NLLLoss,可以对logits 进行归一化并计算预测误差。

# 定义一个交叉熵损失函数,用于多类别分类任务
loss_fn = nn.CrossEntropyLoss()

1.4.3 优化器

模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。

SGD工作原理:

  • 随机性:与传统的批量梯度下降(Batch Gradient Descent,BGD)不同,SGD不是使用整个数据集来计算梯度,而是随机选择数据集中的一个样本或者一个小的样本子集(批量)来计算梯度。这种随机性有助于模型在训练过程中探索不同的数据点,从而可能找到更优的参数值。
  • 梯度计算:对每个选定的样本或批量,SGD计算损失函数相对于模型参数的梯度。梯度是一个向量,其方向是函数增长最快的方向,大小是增长的速度。
  • 参数更新:根据计算得到的梯度,SGD对模型参数进行更新。参数更新方向与梯度相反,大小由学习率决定。学习率是一个超参数,控制每次迭代中参数更新的幅度。
  • 迭代过程:SGD重复上述步骤,每次迭代都使用随机选定的样本或批量来更新参数。随着迭代的进行,模型参数逐渐调整,以减少损失函数的值,从而提高模型的性能。

我们通过model.trainable_params()方法获得模型的可训练参数,并传入学习率超参来初始化优化器。

# 创建一个SGD优化器实例,用于训练模型,最小化损失函数
# model.trainable_params() 是一个生成器,它返回模型中所有可训练参数的列表。
# learning_rate 是SGD算法中的学习率,它控制参数更新的幅度。
# 每次迭代时,优化器会根据当前的梯度更新模型的参数
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)

在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:

grads = grad_fn(inputs)

optimizer(grads)

1.5 训练与评估

设置了超参、损失函数和优化器后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:

  1. 训练:迭代训练数据集,并尝试收敛到最佳参数。
  2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。

接下来我们定义用于训练的train_loop函数和用于测试的test_loop函数。
使用函数式自动微分,需先定义正向函数forward_fn,使用value_and_grad获得微分函数grad_fn。然后,我们将微分函数和优化器的执行封装为train_step函数,接下来循环迭代数据集进行训练即可。

# 定义前向传播函数
def forward_fn(data, label):
    # 使用模型对输入数据进行前向计算,得到logits
    logits = model(data)
    # 使用损失函数计算损失,输入是logits和真实标签
    loss = loss_fn(logits, label)
    # 返回损失和logits
    return loss, logits

# 获取梯度计算函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 定义一步训练函数
def train_step(data, label):
    # 使用梯度计算函数计算损失和梯度
    (loss, _), grads = grad_fn(data, label)
    # 使用优化器更新模型参数
    optimizer(grads)
    # 返回损失
    return loss

# 定义训练循环函数,需要传入模型和训练数据
def train_loop(model, dataset):
    # 获取训练数据集的大小
    size = dataset.get_dataset_size()
    # 设置模型为训练模式
    model.set_train()
    # 遍历数据集的生成器,创建一个迭代器
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        # 执行一步训练,计算损失
        loss = train_step(data, label)

        # 如果当前批次是每100个批次打印一次损失,以便监控训练过程
        if batch % 100 == 0:
            # 将损失转换为numpy数组以便打印
            loss, current = loss.asnumpy(), batch
            # 打印损失和当前批次
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

test_loop函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。

# 定义测试循环函数,需要传入模型,测试数据集和损失函数
def test_loop(model, dataset, loss_fn):
    # 获取测试数据集的大小
    num_batches = dataset.get_dataset_size()
    # 设置模型为评估模式
    model.set_train(False)
    # 初始化计数器
    total, test_loss, correct = 0, 0, 0
    # 遍历数据集的生成器,创建一个迭代器
    for data, label in dataset.create_tuple_iterator():
        # 使用模型对输入数据进行前向计算,得到预测结果
        pred = model(data)
        # 累加样本数量
        total += len(data)
        # 累加损失
        test_loss += loss_fn(pred, label).asnumpy()
        # 计算正确预测的数量
        correct += (pred.argmax(1) == label).asnumpy().sum()
    # 计算平均损失
    test_loss /= num_batches
    # 计算准确率
    correct /= total
    # 打印测试结果
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

# 训练循环
for t in range(epochs):
    # 打印当前epoch的信息
    print(f"Epoch {t+1}\n-------------------------------")
    # 调用训练循环函数,传入模型和训练数据集
    train_loop(model, train_dataset)
    # 调用测试循环函数,传入模型、测试数据集和损失函数
    test_loop(model, test_dataset, loss_fn)
# 训练完成
print("Done!")

输出:
模型训练

可以看到,经过三轮训练,模型准确率从91.0%提升到92.9%和93.8%
损失从0.32降低到0.24和0.21

2. 小结

今天进一步学习了模型训练的全过程,主要包括:

  • 下载MNIST手写数字识别的数据集
  • 通过数据管道datapipe分别对训练数据集和测试数据集的图像数据进行视频变换,标签数据进行类型变换,并对数据进行打包
  • 创建一个包含展平层flatten、三个全连接层dense和两个激活函数ReLU的神经网络network实例
  • 定义训练轮次epochs、批量大小batch_size、学习率learning_rate等超参数
  • 定义用于多分类任务的损失函数loss_fn
  • 定义了一个SGD随机梯度算法优化器,用于更新优化模型参数
  • 定义前向传播函数forward_fn,用于生成梯度计算函数grad_fn
  • 根据梯度计算函数grad_fn和优化器optimizer定义单步训练函数train_step
  • 定义训练循环函数train_loop和测试循环函数test_loop
  • 最后完成多轮训练和测试,达到了提升模型性能的目的
  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的微信小程序制作学习计划打卡记录页面的代码示例,其中包含了前几学习时间: ``` <view class="container"> <view class="header"> <text>学习计划打卡记录</text> </view> <view class="content"> <view class="card"> <view class="card-header"> <text>今</text> <text>2021-07-01</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> </view> </view> <view class="card"> <view class="card-header"> <text>昨</text> <text>2021-06-30</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>120分钟</text> </view> </view> </view> <view class="card"> <view class="card-header"> <text>前</text> <text>2021-06-29</text> </view> <view class="card-body"> <view class="card-row"> <text>学习时间:</text> <input type="number" placeholder="请输入学习时间(分钟)"/> </view> <view class="card-row"> <text>已学习:</text> <text>90分钟</text> </view> </view> </view> </view> </view> ``` 在上面的代码中,我们使用了三个 `card` 元素来展示前几打卡记录。每个 `card` 元素都包含一个 `card-header` 元素和一个 `card-body` 元素。`card-header` 元素中包含了日期信息,而 `card-body` 元素中包含了输入框和已学习时间的显示。 在实际开发中,你需要将上面的代码替换成你自己的样式和数据。同时,你还需要编写处理用户输入和计算已学习时间的逻辑代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值