结合XAI的AutoEncoder无监督异常侦测

近年来,随着XAI的兴起,使得AI是可解释的、可信任的、可优化的,目前将新技术XAI运用于冰机、空压机等设备的PHM的案例较少,对于实时数据监测的PHM,采用XAI进行异常解释可得到不错的效果,本文使用无监督学习中的自编码技术对时序数据进行异常侦测,采用可解释器shap进行异常原因定位

 

explainer = shap.DeepExplainer(model=model, data=torch.from_numpy(X[:200].astype(np.float32)))#得到shap基线
shap_value_single = explainer.shap_values(X=torch.from_numpy(XpredictInputData.astype(np.float32)))
shap_values_weight_mean = np.zeros(260)
name_features = anamoly_data.columns#特征名称
for j in range(len(hh)):
    input_label_index_value = hh[j]
    shap_values = np.array([], dtype=np.float64)
    weight_value = weight_values[j]
    features=[]
    values=[]
    for i in range(0, LOOKBACK_SIZE):
        tmp_shap = shap_value_single[input_label_index_value][0][i]
        shap_values = np.append(shap_values, tmp_shap)
        features.extend([s + '_tt' + str(3 * (LOOKBACK_SIZE - i)) for s in name_features])
        values.extend(anamoly_data.iloc[specific_prediction_sample_to_explain_index-(LOOKBACK_SIZE-i-1),:])
    shap_values_weight_mean += weight_value * shap_values

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
xai方法是指解释人工智能模型如何进行决策的一种透明化技术。xai代表可解释人工智能(Explainable Artificial Intelligence)。人工智能模型通常是由大量数据训练而成的,而这些模型的决策过程常常被视为黑盒子,难以理解。xai方法的目的就是帮助我们理解和解释人工智能模型的决策过程,使其更加透明和可信赖。 xai方法可以通过多种方式实现。其中,一种常见的方法是生成可解释的决策规则。通过分析和解释模型中的参数、权重和特征,我们可以得出一些可理解和可解释的规则,从而理解模型是如何做出决策的。 另外,xai方法还可以通过可视化技术来实现。通过将模型的输入和输出可视化,我们可以更直观地理解模型的决策过程。例如,我们可以将模型对不同输入的判断结果可视化为热力图或者决策树等形式,从而帮助我们理解模型的思考过程。 xai方法的应用领域非常广泛。在医疗诊断中,如果一个人工智能模型给出了一个疾病的预测结果,我们希望能够知道模型是基于哪些特征做出了预测,以增加结果的可信度。在金融领域,人工智能模型可以用于风险评估和预测,而xai方法可以帮助我们理解模型是如何分析和评估风险的,从而为决策者提供更好的支持。 总的来说,xai方法旨在提高人工智能模型的可解释性和可信度,在许多应用领域中具有重要的意义。通过解释模型的决策过程,我们可以更加理解和信任人工智能模型,从而更好地应用和推广人工智能技术。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值