结合XAI的AutoEncoder无监督异常侦测

文章探讨了在预测性维护(PHM)中应用可解释人工智能(XAI)的新方法。通过使用自编码器进行时序数据的无监督异常检测,并借助SHAP解释器定位异常原因。在冰机和空压机等设备的监控数据中,这种方法能有效解释实时数据监测中的异常情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,随着XAI的兴起,使得AI是可解释的、可信任的、可优化的,目前将新技术XAI运用于冰机、空压机等设备的PHM的案例较少,对于实时数据监测的PHM,采用XAI进行异常解释可得到不错的效果,本文使用无监督学习中的自编码技术对时序数据进行异常侦测,采用可解释器shap进行异常原因定位

 

explainer = shap.DeepExplainer(model=model, data=torch.from_numpy(X[:200].astype(np.float32)))#得到shap基线
shap_value_single = explainer.shap_values(X=torch.from_numpy(XpredictInputData.astype(np.float32)))
shap_values_weight_mean = np.zeros(260)
name_features = anamoly_data.columns#特征名称
for j in range(len(hh)):
    input_label_index_value = hh[j]
    shap_values = np.array([], dtype=np.float64)
    weight_value = weight_values[j]
    features=[]
    values=[]
    for i in range(0, LOOKBACK_SIZE):
        tmp_shap = shap_value_single[input_label_index_value][0][i]
        shap_values = np.append(shap_values, tmp_shap)
        features.extend([s + '_tt' + str(3 * (LOOKBACK_SIZE - i)) for s in name_features])
        values.extend(anamoly_data.iloc[specific_prediction_sample_to_explain_index-(LOOKBACK_SIZE-i-1),:])
    shap_values_weight_mean += weight_value * shap_values

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值