Python数据分析案例02——泰尔指数的计算

该博客介绍了如何使用Python计算泰尔指数,以分析2000年至2019年中国各省份城乡收入的均衡情况。通过面板数据,计算农村、城市及城乡间的泰尔指数,揭示收入差距变化趋势。结果显示,泰尔指数整体呈下降趋势,表明发展不平衡现象有所缓解,其中城乡间贡献率最高,显示出城乡收入差距较大。
摘要由CSDN通过智能技术生成

泰尔指数是在经济学管理学中写论文常见的一种评价发展是否平衡的一种方法。适用于面板数据,基本思想是利用每个地区的人均收入和总人口数进行加权计算,比较一个地区的不同地方发展是否平衡,类似于方差分析。就是研究分类型自变量对数值型因变量的影响,只不过加了个权用指数表示出来了。

具体公式和计算原理介绍如下:


泰尔指数计算:

总差异的Theil指数公式如下:

本文中的区域表示的是城市和农村两大区域,分组是分成了31个省份。
也就是说,这里的区域之间就是农村跟城市之间,城市之间就是每个省份之间。


看不懂没关系....下面直接看代码。需要这代码演示数据的同学可以参考:数据


导入包:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
#import seaborn as sns
plt.rcParams ['font.sans-serif'] ='SimHei'            
plt.rcParams ['axes.unicode_minus']=False     

读取数据:观察数据的样子

data=pd.read_excel('2000-2019年分地区人均可支配收入、城市和农村可支配收入以及泰尔指数.xlsx')
data.head()

 典型的面板数据,有时间和地区两个变量。

首先我们计算农村的泰尔指数,先通过数据透视表或者分组聚合方法得到每个地区每年的单独的数据:

农村平均家庭可支配=data.groupby(['year','pro'])['农村家庭可支配(元)'].mean().unstack()
农村总人口=data.groupby(['year','pro'])['农村总人口(万人)'].mean().unstack()
#还可以像下面这样数据透视,结果也是一样的
农村平均家庭可支配=data.pivot(index='year',columns='pro',values='农村家庭可支配(元)')
农村总人口=data.pivot(index='year',columns='pro',values='农村总人口(万人)')

查看数据前5行

农村平均家庭可支配.head()

31个省份各自的农村家庭平均收入,农村总人口也是一样的,不展示了。

下面将农村家庭平均收入乘上农村总人口,可以得到每个省份每年的农村总可支配收入:

农村家庭可支配=农村总人口*农村平均家庭可支配
农村家庭可支配.head()

 然后对省份进行求和,相对于对列求和,计算每年所有省份的农村家庭可支配收入的总和:

农村家庭可支配.sum(axis=1)

 然后按时间上,也是每行上,每个省份都除以当前年份的这个总和数。

人口也是做同样的处理,每年所有省份求和,然后再分别除以这个求和数。

就相对于计算了每年每个省份各自的农村可支配收入的比例,然后除以人口的这个比例,然后取对数。

农村家庭可支配=农村家庭可支配.div(农村家庭可支配.sum(axis=1),axis=0)
农村总人口=农村总人口.div(农村总人口.sum(axis=1),axis=0)
农村家庭可支配2=农村家庭可支配.copy()
农村家庭可支配=农村家庭可支配/农村总人口

for i in 农村家庭可支配.columns:
    农村家庭可支配[i]= 农村家庭可支配[i].apply(np.log) 

我这里变量名有点乱,都把前面的覆盖了....

计算出来的对数后和原来的农村家庭可支配比例相乘,然后按列求和,也就是对每各省份求和,然后除以省份个数31,就可以得到我们的农村泰尔指数。

农村家庭可支配=农村家庭可支配*农村家庭可支配2
农村家庭可支配['logsum']= 农村家庭可支配.sum(axis=1)/31
农村泰尔指数=农村家庭可支配['logsum']
农村泰尔指数


下面再计算城市泰尔指,流程就和上面一样了

城市家庭可支配=data.groupby(['year','pro'])['城市家庭可支配(元)'].mean().unstack()
城市总人口=data.groupby(['year','pro'])['城镇总人口(万人)'].mean().unstack()
城市家庭可支配=城市总人口*城市家庭可支配
城市家庭可支配=城市家庭可支配.div(城市家庭可支配.sum(axis=1),axis=0)
城市总人口=城市总人口.div(城市总人口.sum(axis=1),axis=0)
城市家庭可支配2=城市家庭可支配.copy()
城市家庭可支配=城市家庭可支配/城市总人口
for i in 城市家庭可支配.columns:
    城市家庭可支配[i]= 城市家庭可支配[i].apply(np.log) 
    
城市家庭可支配=城市家庭可支配*城市家庭可支配2
城市家庭可支配['logsum']= 城市家庭可支配.sum(axis=1)/31
城市泰尔指数=城市家庭可支配['logsum']

查看

城市泰尔指数


再计算总体的城乡间的泰尔指数

总体家庭可支配=data.groupby(['year','pro'])['居民可支配收入(元)'].mean().unstack()
总体总人口=data.groupby(['year','pro'])['总人口数(万人)'].mean().unstack()

总体家庭可支配=总体总人口*总体家庭可支配
总体家庭可支配=总体家庭可支配.div(总体家庭可支配.sum(axis=1),axis=0)
总体总人口=总体总人口.div(总体总人口.sum(axis=1),axis=0)
总体家庭可支配2=总体家庭可支配.copy()

总体家庭可支配=总体家庭可支配/总体总人口
for i in 总体家庭可支配.columns:
    总体家庭可支配[i]= 总体家庭可支配[i].apply(np.log) 
    
总体家庭可支配=总体家庭可支配*总体家庭可支配2
总体家庭可支配['logsum']= 总体家庭可支配.sum(axis=1)/31
城乡间泰尔指数=总体家庭可支配['logsum']
城乡间泰尔指数


将结果写到一个数据框里面,然后求和,计算各自的比例,储存

df=pd.DataFrame()
df['农村泰尔指数']=农村泰尔指数
df['城市泰尔指数']=城市泰尔指数
df['城乡间泰尔指数']=城乡间泰尔指数
df['总泰尔指数']=df.sum(axis=1)  #求和

计算比例

df['农村贡献率(%)']=df['农村泰尔指数']/df['总泰尔指数']
df['城市贡献率(%)']=df['城市泰尔指数']/df['总泰尔指数']
df['城乡间贡献率(%)']=df['城乡间泰尔指数']/df['总泰尔指数']

文本索引

df.index=[str(i) for i in df.index]

储存

df.to_excel('结果.xlsx')

结果可视化

df[['农村泰尔指数','城市泰尔指数','城乡间泰尔指数','总泰尔指数']].plot(figsize=(14,6),title='2000-2019 年居民收入泰尔指数走势图')
plt.savefig('2000-2019 年居民收入泰尔指数走势图.jpg',dpi=256)

比例的可视化

df[['农村贡献率(%)','城市贡献率(%)','城乡间贡献率(%)']].plot(figsize=(14,6),title='2000-2019 年农村、城市、城乡间泰尔指数对总泰尔指数的贡献率')
plt.savefig('2000-2019 年农村、城市、城乡间泰尔指数对总泰尔指数的贡献率图.jpg',dpi=256)

 

 分析:

我们通过的泰尔指数走势图会发现,从2000年到2019年泰尔指数整体趋势,无论是农村还是城市,都是在下降。说明发展不平衡的现象有所缓解。

从农村城市城乡间泰尔指数最总泰尔指数的贡献率来看,城乡之间的泰尔指数对总泰尔指数的贡献率最大,说明城乡之间的收入差距较大,农村的贡献率一直大于城市间贡献率说明,各省份农村之间的收入差异比起城市也较大。

(进一步还可以分析几几年在下降,下降的快和慢等等,最近几年较为平缓,城乡见贡献度有下降趋势等等)

创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制代码可私信)

### 回答1: Pandas是一个Python库,用于数据处理和分析。在数据分析中,预处理是非常重要的一步,因为它可以帮助我们清洗和转换数据,使其更适合进行分析。Pandas提供了一些强大的预处理功能,包括数据清洗、数据转换、数据重塑和数据合并等。在使用Pandas进行数据分析时,预处理是必不可少的一步。 ### 回答2: 在数据分析中,数据的预处理是一个必要的过程。它的主要目的是清洗数据,准备数据,以便后续分析。在Python中,pandas是一种广泛使用的数据处理库。pandas可以通过其高效的数据结构和操作方法来清洗和处理数据。在本文中,将介绍pandas预处理的一些常见技术。 一、读取数据 在pandas中,使用read_csv()函数读取CSV格式的数据文件,read_excel()函数读取Excel格式的数据文件。它们都有很多选项,可以根据具体文件的格式进行设置。 二、查看数据 在pandas中,使用以下函数来查看数据: 1. head() - 显示数据框的前几行; 2. tail() - 显示数据框的后几行; 3. columns - 显示数据框的列名; 4. shape - 显示数据框的行列数; 5. info() - 显示数据框的基本信息,包括每列的名称、非空值数量和数据类型。 三、数据清洗 在数据清洗中,有以下一些常见的技术: 1. 删除重复行:使用drop_duplicates()函数; 2. 替换空值:使用fillna()函数; 3. 删除空值:使用dropna()函数; 4. 更改数据类型:使用astype()函数。 四、数据准备 在数据准备中,有以下一些常见的技术: 1. 数据合并:使用merge()函数; 2. 数据筛选:使用loc()函数或者iloc()函数; 3. 数据分组:使用groupby()函数; 4. 数据排序:使用sort_values()函数。 五、数据分析数据分析中,有以下一些常见的技术: 1. 数据聚合:使用agg()函数; 2. 统计描述:使用describe()函数; 3. 数据可视化:使用matplotlib或者seaborn库。 综上所述,pandas预处理是数据分析中必不可少的一步。通过使用pandas提供的函数和方法,可以方便地清理和处理数据,使其更容易被分析。 ### 回答3: PandasPython中最强大的数据处理库之一,它提供了DataFrame和Series这两种数据结构,可以快速便捷地处理数据。在数据分析过程中,我们往往需要先对数据进行预处理,以便后续的分析。Pandas提供了一系列的方法和函数,可以帮助我们进行数据的预处理。 首先,在进行数据分析之前,我们需要了解自己所面对的数据类型和数据结构。Pandas中的DataFrame结构就是类似于表格的结构,每一行代表一个样本,每一列代表一个属性。Series则是一维的数组结构。通过pandas.read_csv(),我们可以读取CSV格式的数据,并转化为DataFrame结构。 接下来,我们要对数据进行一些基本的处理,例如数据清洗、数据去重、缺失值处理、异常值处理等。在数据清洗过程中,我们往往需要对数据进行一些特殊的处理,例如字符串的分割、合并、替换等操作,Pandas提供了一系列能够对文本进行操作的函数。在数据去重方面,我们可以使用drop_duplicates()函数,它可以去除DataFrame中的重复记录。在处理缺失值时,Pandas提供了一系列的函数,如fillna()函数、dropna()函数,可以方便地将NaN值变为其他有意义的值,或者删除缺失值的行或列。在异常值处理方面,我们可以使用isoutlier()函数来找到数据中的异常值,并进行处理。 在数据预处理完成后,我们可以对数据进行一些统计分析,例如计算小计、计算总计、分位数、极差、方差、标准差等统计指标。我们可以使用describe()函数来获得数据的统计描述,还可以使用groupby()函数来对数据分组,使用agg()函数对每组进行计算统计指标。此外,我们还可以对数据进行排序、丢弃、合并等操作。 总之,Pandas是一个非常强大的Python库,可以轻松处理数据预处理和数据处理方面的任务。Pandas作为数据分析和数据处理的基础库,使用熟练后可以在数据分析中发挥更大的作用。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阡之尘埃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值