电商用户行为数据分析

本文通过AARRR和RFM模型分析电商用户行为,研究拉新、活跃、留存和收益,揭示用户增长关键因素。发现用户在特定时间段活跃度高,留存率稳定,转化效率有待提升,商品销售与浏览行为不一致。同时,通过RFM模型识别用户价值,提出改进策略。
摘要由CSDN通过智能技术生成

一、数据说明

数据来源于天池数据集,阿里巴巴提供的淘宝用户的行为数据,包含2014-11-18至2014-12-18共130万条数据
在这里插入图片描述

二、明确需求

本次想通过对淘宝用户行为数据的分析,为以下问题提供解释和改进建议,以Mysql分析为主

1)基于AARRR漏斗模型,从获客、促活、增加收益三个环节,其中包括研究用户在不同时间尺度下的活跃情况,分析商品销售情况等,确定影响用户增长的因素,给出合理性建议

2)基于RFM模型对用户进行分群,针对不同特征的用户采用相应的营销策略

三、数据清洗

1.选择字段

导入数据时,选择本次分析需要的字段,即保留user_id、item_id、behavior_type、item_categorytime列信息,
并将 time 字段拆分为 date 和 hour

alter table data add column date varchar(128)  
alter table data add column hour varchar(128)

update data set date =left(time,10)
update data set hour =substring(time,11)

2.删除重复值

将user_id,item_id,behavior_type,item_category,time 设置成联合主键,去除数据重复值,保证数据唯一性

3.缺失值处理

通过计算表格总行数和各字段行数,均为130万行,无缺失值

select count(*),count(user_id),count(item_id),count(behavior_type),count(item_category),count(time) from data

在这里插入图片描述

4.异常值处理

查看time时间范围,behavior_type的类型,

select min(time),max(time) from data
select distinct behavior_type from data

在这里插入图片描述
在这里插入图片描述

5.数据一致化

将用户行为类型的‘1/2/3/4’ 更改为’pv’,‘col’,‘cart’,‘buy’,点击、收藏、加入购物车、购买

update data set behavior_type = ( case when behavior_type=1 then 'pv'
                                       when behavior_type=2 then 'col'
                                       when behavior_type=3 then 'cart' else 'buy' end)

整理过后的表格如下
在这里插入图片描述

四、数据分析

将excel数据导入到可视化工具tableau中,通过建立图表和仪表板来反映数据变量之间的关系。

1.AARRR模型

(1)拉新

日新增用户

select date 日期,count(user_id) 日新增用户数 from
                                           (select user_id,date from data group by user_id order by date) dataa group by date

选取2014-11-18日为APP启用的首日,日新增用户的数量在11-18日至11-20日骤降,后趋近平缓,在12月初有上升的趋势,并在12-12日达到小高潮。
数据选取时间开始于11-18日,11-18日当天的新增用户很多是以前就已存在的活跃用户;由于双十二活动的举办,使得新增用户在月初就有上升的趋势,在活动的当天达到高潮。
![在这里插入图片描述](https://img-blog.csdnimg.cn/53086fa58ff34dde9bc6b0b613bffeb5.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAd2VpeGluXzQ2MjgxMDY3,size_11,color_FFFFFF,t_70,g_se,x_16

(2) 活跃

PV、UV、PV/UV

将活跃用户定义为当天存在任意行为记录的用户,PV为1162421,UV为3971,人均访问量为292.73

#uv,pv,pv/uv
select count(distinct user_id) UV ,(select count
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值