【江苏省大学生核心就业能力培训(笔记)】

该培训涵盖了人际沟通、职业探索、生产力工具、创新和求职等多个方面。在人际沟通中,强调了有效沟通法则和职场沟通策略;职业探索部分教导如何解决生涯困惑并制定探索方案;生产力工具涉及Office应用、书面规范和数据分析;创新内容包括创新思维和校园痛点的解决方案;求职章节指导简历投递和面试应对;自我管理则讨论了生涯定位和发展智慧,旨在全面提升大学生的就业竞争力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

江苏省大学生核心就业能力培训

**

一,人际沟通

  • 第一节, 沟通解密

    沟通是无时不在,无处不在
    沟通效果影响工作效率
    沟通的媒介:文字语言,语音语调,表情,身体语言
    沟通是有反馈的,是双向的

  • 第二节, 沟通影响因素

    社会因素:社会建构,社会情境,组织文化
    个人因素:性格因素(主要)
    性格问题与道德问题的混淆
    内向与外向,能量获取的渠道不同

  • 第三节, 有效沟通法则

    焦点效应:过度关注自己
    放下自利,代以利他,互惠互利

  • 第四节, 沟通信息的有效传达

    发起者的角度:共同点,身份,站在自身对立面,表达方式和外在形象
    沟通对象的角度:性格,经历的时代,时机
    建构信息:沟通载体,信息传递顺序,如何表达

  • 第五节, 职场沟通

    领导:沟通和汇报,不是问答题用选择题,合适的时机和场合
    平级:学会协作,欣赏他人,谦虚
    下属:任务明确,善于激励,学会尊重

    放下自利,惠以利他

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值