HDU-3903:Trigonometric Function(三角函数与无理数)

传送门
Problem Description
Give you a triangle ABC. Get more information in the picture below.
在这里插入图片描述
Now, give you 6 integers a, b, c, n, m and k. a, b and c are triangle ABC`s three edges. Can you judge whether the result of the following fraction is rational number?
在这里插入图片描述
Input
There are several test cases in the input data.
Each case is just one line with 6 integers – a, b, c, n, m, k (0< a, b, c, n, m, k < 10^4) separated by spaces. The input data ensures that sin(kC) will not be equal with 0.

Output
Each case output “YES”, if the result of the fraction is rational number, otherwise “NO”.
Sample Input

2
1 1 1 1 1 1
3 4 5 6 7 7

Sample Output

NO
YES

数学定理分析
由于 cos ⁡ A = b 2 + c 2 − a 2 2 b c \cos{A}=\frac{b^2+c^2-a^2}{2bc} cosA=2bcb2+c2a2,由于a,b,c都是整数,整数相除结果为有理数,所以 cos ⁡ A \cos{A} cosA为有理数,同理可得 cos ⁡ B 、 cos ⁡ C \cos{B}、\cos{C} cosBcosC也是有理数;

下面用数学归纳法证明 cos ⁡ n A \cos{nA} cosnA为有理数;
由于 cos ⁡ 2 A = 2 cos ⁡ 2 A − 1 \cos{2A}=2\cos^2{A}-1 cos2A=2cos2A1所以 cos ⁡ 2 A \cos{2A} cos2A也是有理数;
假设 cos ⁡ n A , ( n ∈ [ 1 , k ] \cos{nA},(n\in [1,k] cosnAn[1,k],且 n n n为整数 ) ) 是有理数;
则当 n = k + 1 n=k+1 n=k+1时, cos ⁡ ( k + 1 ) A = cos ⁡ k A cos ⁡ A − sin ⁡ k A sin ⁡ A \cos{(k+1)A}=\cos{kA}\cos{A}-\sin{kA}\sin{A} cos(k+1)A=coskAcosAsinkAsinA由于 sin ⁡ k A sin ⁡ A = − cos ⁡ ( k + 1 ) A − cos ⁡ ( k − 1 ) A 2 \sin{kA}\sin{A}=-\frac{\cos{(k+1)A}-\cos{(k-1)A}}{2} sinkAsinA=2cos(k+1)Acos(k1)A
化简得, cos ⁡ ( k + 1 ) A = 2 cos ⁡ k A cos ⁡ A − cos ⁡ ( k − 1 ) A \cos{(k+1)A}=2\cos{kA}\cos{A}-\cos{(k-1)A} cos(k+1)A=2coskAcosAcos(k1)A由于 cos ⁡ k A 、 cos ⁡ A 、 cos ⁡ ( k − 1 ) A \cos{kA}、\cos{A}、\cos{(k-1)A} coskAcosAcos(k1)A都是有理数,所以 cos ⁡ ( k + 1 ) A \cos{(k+1)A} cos(k+1)A也是有理数,即上述假设成立;

由此我们不难得出 cos ⁡ ( n A + m B ) \cos{(nA+mB)} cos(nA+mB)也是有理数,所以,我们只需证明分母 sin ⁡ k C \sin{kC} sinkC也是有理数就可得出 cos ⁡ ( n A + m B ) sin ⁡ k C \frac{\cos{(nA+mB)}}{\sin{kC}} sinkCcos(nA+mB)的结果是有理数;

由于 sin ⁡ k C = sin ⁡ ( k − 1 ) C cos ⁡ C + cos ⁡ ( k − 1 ) C sin ⁡ C \sin{kC}=\sin{(k-1)C}\cos{C}+\cos{(k-1)C}\sin{C} sinkC=sin(k1)CcosC+cos(k1)CsinC
sin ⁡ ( k − 1 ) C = sin ⁡ ( k − 2 ) C cos ⁡ C + cos ⁡ ( k − 2 ) C sin ⁡ C \sin{(k-1)C}=\sin{(k-2)C}\cos{C}+\cos{(k-2)C}\sin{C} sin(k1)C=sin(k2)CcosC+cos(k2)CsinC
. . . . . . ...... ......
最终 sin ⁡ k C \sin{kC} sinkC可以化为一个有理数N与 sin ⁡ C \sin{C} sinC相乘的形式,即 sin ⁡ k C = N sin ⁡ C \sin{kC}=N\sin{C} sinkC=NsinC,其中 N N N为有理数,只需知道 sin ⁡ C \sin{C} sinC是否为有理数即可说明 sin ⁡ k C \sin{kC} sinkC是否为有理数;

因为 sin ⁡ C = 1 − cos ⁡ 2 C = 4 a 2 b 2 − ( a 2 + b 2 − c 2 ) 2 4 a 2 b 2 \sin{C}=\sqrt{1-\cos^2{C}}=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{4a^2b^2}} sinC=1cos2C =4a2b24a2b2(a2+b2c2)2

则只需判断根号里面的数是否为平方数,即可得出 sin ⁡ C \sin{}C sinC是否为有理数,进而得出 sin ⁡ k C \sin{kC} sinkC是否为有理数,最终得出 cos ⁡ ( n A + m B ) sin ⁡ k C \frac{\cos{(nA+mB)}}{\sin{kC}} sinkCcos(nA+mB)结果是否为有理数;
代码实现

#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
#include<iomanip>
using namespace std;
int main()
{
//a, b, c, n, m, k (0< a, b, c, n, m, k < 10^4) 
	int N;
	cin >> N;
	while (N--)
	{
		long long a, b, c, n, m, k;
		scanf("%lld%lld%lld%lld%lld%lld", &a, &b, &c, &n, & m, &k);
		long long res = 4 * a * a * b * b - (a * a + b * b - c * c) * (a * a + b * b - c * c);
		long long sq = sqrt(res);
		if (sq * sq == res)
			cout << "YES" << endl;
		else
			cout << "NO" << endl;
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艺千秋录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值