正常扩散与奇异扩散
MSD(均方位移)
首先引入均方位移(Mean Squared Displacement)的概念,均方位移定义为:
M
S
D
=
<
∣
x
(
t
)
−
x
(
0
)
∣
2
>
=
1
N
∑
i
=
1
N
∣
x
(
i
)
(
t
)
−
x
(
i
)
(
0
)
∣
2
MSD=<|x(t)-x(0)|^2>=\frac{1}{N}\sum^N_{i=1}|x^{(i)}(t)-x^{(i)}(0)|^2
MSD=<∣x(t)−x(0)∣2>=N1i=1∑N∣x(i)(t)−x(i)(0)∣2
其中
<
>
<>
<>是对所有原子平均
正常扩散(Norm Diffusion)
正常扩散是指MSD与时间呈现线性关系的扩散,即 M S D ∝ ( t ) a MSD\propto(t)^a MSD∝(t)a, a a a等于1,布朗运动就属于正常扩散。
布朗运动的推导(非权威)
布朗运动满足独立正太增量,
B
(
t
)
−
B
(
s
)
∼
N
(
0
,
t
−
s
)
B(t)-B(s) \sim N(0,\,t-s)
B(t)−B(s)∼N(0,t−s)
因此:
M
S
D
=
E
(
B
2
(
t
)
)
=
V
(
B
(
t
)
)
+
E
2
(
B
(
t
)
)
=
t
MSD=E(B^2(t))=V(B(t))+E^2(B(t))=t
MSD=E(B2(t))=V(B(t))+E2(B(t))=t
维基百科:
<
r
2
(
τ
)
=
2
d
D
τ
>
<r^2(\tau)=2dD\tau>
<r2(τ)=2dDτ>
其中d是维数,D是扩散系数(维基百科)
奇异扩散/异常扩散(Anomalous Diffusion)
异常扩散是指均方位移MSD与时间具有非线性关系的扩散过程,在生物学中已经观察到自然界中细胞核,质膜和细胞质中异常扩散的例子。
遵循菲克定律的扩散过程称为正常扩散或菲克扩散。不遵守菲克定律的扩散过程称为异常扩散或非菲克扩散。
与典型的扩散不同,异常扩散由幂律描述,
<
r
2
(
τ
)
>
=
K
α
τ
α
<r^2(\tau )> =K_{\alpha }\tau^{\alpha}
<r2(τ)>=Kατα,其中
K
α
K_{\alpha }
Kα是广义扩散系数而
τ
\tau
τ是扩散时间。在布朗运动中,α = 1。如果α > 1,则该过程是超扩散(Super Diffusion)。超扩散可能是活跃的细胞运输过程的结果,也可能是由于具有重尾分布(Heavy-tailed distribution)的跳跃。如果α <1,则称为亚扩散(Sub Diffusion)。
重尾分布(Heavy-tailed distribution):重尾分布意味着可以更大的概率获得很大的值.
Heavy-tailed distribution:In probability theory, heavy-tailed distributions are probability distributions whose tails are not exponentially bounded:1 that is, they have heavier tails than the exponential distribution. In many applications it is the right tail of the distribution that is of interest, but a distribution may have a heavy left tail, or both tails may be heavy.
简单来说,重尾分布就是尾部不呈现指数边界的概率分布,尾部更重。
∫ − ∞ ∞ e t x d F ( x ) = ∞ f o r a l l t > 0 \int^\infty_{-\infty}e^{tx}dF(x)=\infty \,\,\,\,\, for\,all\,t>0 ∫−∞∞etxdF(x)=∞forallt>0
弹道扩散(Ballistic Diffusion)杂谈
文章中提到异常超扩散的特点是扩散速率快于 Fickian 扩散 预测的 t 1 / 2 t^{1/2} t1/2.具有 t 1 / b t^{1/b} t1/b 传播速率的超扩散可以通过具有 b 阶的空间分数扩散方程来建模。2
菲克定律
在不依靠宏观的混合作用发生的传质现象时,描述分子扩散过程中传质通量与浓度梯度之间关系的定律。
- 第一定律:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大。这就是菲克第一定律。
- 菲克第二定律:在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值。
公式表达第一定律就是:
J
≡
d
m
A
d
t
=
−
D
(
∂
C
∂
X
)
J\equiv\frac{dm}{Adt}=-D(\frac{\partial C}{\partial X})
J≡Adtdm=−D(∂X∂C)
D为扩散系数,C为扩散物质的体积浓度。扩散方向为浓度梯度的反方向,三维体系内:
J
=
i
J
x
+
j
J
y
+
k
J
z
=
−
D
(
i
∂
c
∂
x
+
j
∂
c
∂
y
+
k
∂
c
∂
z
)
J=iJ_x+jJ_y+kJ_z=-D(i\frac{\partial c}{\partial x}+j\frac{\partial c}{\partial y}+k\frac{\partial c}{\partial z})
J=iJx+jJy+kJz=−D(i∂x∂c+j∂y∂c+k∂z∂c)
菲克第二定律的数学形式是
∂
C
∂
t
=
D
∂
2
C
∂
x
2
\frac{\partial C}{\partial t}=D\frac{\partial ^2C}{\partial x^2}
∂t∂C=D∂x2∂2C
正常扩散与异常扩散的另一个判定
遵循菲克定律的扩散过程称为正常扩散或菲克扩散。不遵守菲克定律的扩散过程称为异常扩散或非菲克扩散。
稳态扩散与非稳态扩散
- 菲克第一定律只适应于J和C不随时间变化——稳态扩散(Steady-state diffusion)的场合。所谓稳定扩散是指扩散过程中扩散物质的浓度分布不随时间变化的扩散过程
- 非稳态扩散是指扩散过程中扩散物质的浓度分布随时间变化的一类扩散过程。
References
[1] Asmussen, S. R. (2003). “Steady-State Properties of GI/G/1”. Applied Probability and Queues. Stochastic Modelling and Applied Probability. Vol. 51. pp. 266–301. doi:10.1007/0-387-21525-5_10. ISBN 978-0-387-00211-8.
[2] Kelly, J. F., Li, C., & Meerschaert, M. M. (2018). Anomalous diffusion with ballistic scaling: A new fractional derivative. Journal of Computational and Applied Mathematics, 339, 161-178. https://doi.org/10.1016/j.cam.2017.11.012