模式识别
文章平均质量分 76
决策树的第七个分支
不是我
展开
-
CFDP(Clustering by fast search and find of density peaks)算法实现
一、算法简介K-means 算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。经典的聚类算法 K-means 是通过指定聚类中心,再通过迭代的方式更新聚类中心的方式,由于每个点都被指派到距离最近的聚类中心,所以导致其不能分析出非球面类别的数据分布。虽然有 DBSCAN(densi原创 2021-06-21 09:45:04 · 1267 阅读 · 4 评论 -
不调库实现k-means聚类分析
一、实验目的理解 K-means 聚类算法的基本原理学会用 python/matlab 实现 K-means 算法二、实验内容随机生成 500 个数,并对这 500 个数进行 k-mean 聚类(k=3,4,5,6),(并用 matplot/plot 画 图)1) 随机创建 500 个样本的二维数据作为训练集;2) k=3 进行聚类,并观察簇分布;3) k=4 进行聚类,并观察簇分布;4) k=5 进行聚类,并观察簇分布;5) k=6 进行聚类,并观察簇分布;针对上传的数据集:sale原创 2021-06-10 12:34:34 · 1076 阅读 · 0 评论 -
集成学习分类器
一、实验目的(1) 掌握Bagging算法的原理;(2) 掌握Adaboosting算法的原理;(3) 掌握Sklearn建模的流程;(4) 掌握调参的基本思想。二、实验内容(1)Bagging算法在Bagging方法中,利用bootstrap方法从整体数据集中采取有放回抽样得到N个数据集,在每个数据集上学习出一个模型,最后的预测结果利用N个模型的输出得到,具体地:分类问题采用N个模型预测投票的方式,回归问题采用N个模型预测平均的方式。例如随机森林(Random Forest)就属于Bagg原创 2021-05-30 16:13:26 · 1078 阅读 · 0 评论 -
使用决策树方法对泰坦尼克号数据进行预测和分类。
一、实验目的(1) 熟悉和掌握信息熵的概念和定义;(2) 掌握决策树分类方法(3) 使用决策树方法对泰坦尼克号数据进行预测和分类。二、实验内容(1)导入数据集(2)数据清洗:① 删除对分类无帮助的特征② 将某些字符串特征数值化③ 填补缺失值或删除(3)用sklearn默认参数生成棵普通的决策树,查看评分(4) 调整参数,得到最优的参数并生成最终的树(5)画出决策树三、实验代码#代码一import pandas as pdimport numpy as npimport ma原创 2021-05-30 16:08:52 · 1416 阅读 · 1 评论 -
朴素贝叶斯处理鸢尾花数据集分类
一、实验目的(1) 掌握贝叶斯算法原理;(2) 掌握朴素贝叶斯原理;(3) 使用朴素贝叶斯处理鸢尾花数据集分类二、实验内容(1)导入库,加载鸢尾花数据,输出样本和鸢尾花特征(2)数据分割,数据分割,形成模型训练数据和测试数据(3)高斯贝叶斯模型构建(4)计算预测值并计算准确率(5)画图三、实验代码import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib as mpl原创 2021-05-30 16:01:35 · 9831 阅读 · 3 评论