dropout丢弃法python

丢弃法(dropout)

动机

一个好的模型需要对输入数据的扰动鲁棒。
1、使用有噪音的数据等价于Tikhonov正则。(权重的范围不要太大,防止过拟合,在数据里面加入噪音等价于正则。正则都是为了避免过拟合??随机噪音)
2、丢弃法:在层之间加噪音。

无偏差的加入噪音

丢弃法对每个元素进行如下扰动:概率p为0,其他情况变大。p就是dropout rate
x i ′ = { 0 with probablity p x ′ 1 − p otherise x_i^{'} =\begin{cases} 0 &\text{with probablity p}\\ \frac{x'}{1-p} &\text{otherise}\\ \end{cases} xi={01pxwith probablity potherise

使用丢弃法

通常将丢弃法作用在隐藏全连接层的输出上。(昨天汇报的那篇论文Deep learn FHE就是最后是全连接层加dropout层)
h = σ ( W 1 x + b 1 ) 第一个隐藏层,激活函数 h ′ = d r o p o u t ( h ) 在概率 p 丢弃 o = W 2 h ′ + b 2 输出层 y = s o f t m a x ( o ) h=\sigma(W_1x+b_1) 第一个隐藏层,激活函数\\ h'=dropout(h) 在概率p丢弃\\ o=W_2h'+b_2 输出层\\ y=softmax(o) h=σ(W1x+b1)第一个隐藏层,激活函数h=dropout(h)在概率p丢弃o=W2h+b2输出层y=softmax(o)

假设原先一共3层,分别有输入层4,隐藏层5,输出层3.
变为输入层4,隐藏层剩下3个,输出不变还是3。下一次可能是另外一些。随机化。

推理中的丢弃法:
正则项只在训练中使用:他们会影响参数的更新。
在推理过程中,丢弃法直接返回输入。
预测时:h=dropout(h)
这样也能保证确定性的输出。

总结:

丢弃法将一些输出项随机置0来控制模型的复杂度。(增加单元,减少复杂度)
常作用于多层感知机MLP的隐藏层输出上。
丢弃概率式控制模型复杂度的超参数。

import torch
import timer
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
def dropout_layer(X, dropout):#简洁实现时,这个函数已经封装好了
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃。
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留。不变
    if dropout == 0:
        return X
    mask = (torch.randn(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)#此时mask只取两个值,0和1,相当于取一些位置置0

'''
实例
x=torch.arange(16,dtype=torch.float32).reshape((2,8))
print(x)
print(dropout_layer(x,0.))
print(dropout_layer(x,0.5))
print(dropout_layer(x,1.))
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0.,  0.,  0.,  0.,  8.,  0.,  0., 14.],保持期望不变,值会变大
        [ 0., 18.,  0.,  0.,  0., 26., 28.,  0.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 0., 0.]])
'''
#定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元,注意是否是在训练

num_inputs, num_outputs, num_hidden1, num_hidden2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5


class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hidden1, num_hidden2, is_training=True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hidden1)
        self.lin2 = nn.Linear(num_hidden1, num_hidden2)
        self.lin3 = nn.Linear(num_hidden2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        # 只有在训练模型时才使用dropout
        if self.training:
            # 在第一个全连接层之后添加一个dropout层,先激活relu
            H1 = dropout_layer(H1, dropout1)
        H2 = self.relu(self.lin2(H1))
        if self.training:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out

net = Net(num_inputs, num_outputs, num_hidden1, num_hidden2)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss()#交叉熵
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
print(len(train_iter))
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)
plt.show()

#有dropout结果会比之前好许多


在这里插入图片描述

import torch
import timer
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


num_inputs, num_outputs, num_hidden1, num_hidden2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(),
                    # 在第一个全连接层之后添加一个dropout层
                    nn.Dropout(dropout1), nn.Linear(256, 256), nn.ReLU(),
                    # 在第二个全连接层之后添加一个dropout层
                    nn.Dropout(dropout2), nn.Linear(256, 10))
net.apply(init_weights)
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
plt.show()

在这里插入图片描述

QA

  1. dropout随机置0,梯度和权重也会为0.
  2. dropout超参数设置要合适, 不合理输出结果影响不同。
    随机丢弃保证不了正确性,,看精度,可以重复。
  3. 丢弃法是在训练中吧神经元丢弃后训练,在预测网络中的神经元没有丢弃。
  4. 每epoch迭代一次,随机丢弃一次。
  5. BN是卷积层,dropout是全连接层使用。
  6. dropout没有被丢弃的输入部分的值会改变(变大),保持期望(方差,均值不变),训练数据的标签还是原来的值。
  7. 解决过拟合的问题上,两种方法,可以一起用,dropout减少复杂度,L2限制权重范围。
  • 26
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值