【概率论与数理统计(研究生课程)】知识点总结3(二维随机变量及其分布)

本文详细总结了概率论与数理统计中关于二维随机变量的知识点,包括联合分布函数、边缘分布律、条件概率、函数分布(如和、差、积、商的分布)以及最大最小值分布。对于离散型和连续型随机变量,分别阐述了它们的计算方法,并特别指出当随机变量相互独立时的特殊情况。此外,还介绍了如何从边缘分布推导联合分布以及如何处理随机变量函数的分布问题。
摘要由CSDN通过智能技术生成

原文地址【概率论与数理统计(研究生课程)】知识点总结3(二维随机变量及其分布)

联合分布函数

F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X\le x, Y\le y\} F(x,y)=P{Xx,Yy}

性质:
F ( + ∞ , + ∞ ) = 1 F ( − ∞ , − ∞ ) = F ( x , − ∞ ) = F ( − ∞ , y ) = 0 \begin{aligned} &F(+\infty,+\infty)=1 \\ F(-\infty, -\infty)=&F(x, -\infty)=F(-\infty, y)=0 \end{aligned} F(,)=F(+,+)=1F(x,)=F(,y)=0

二维随机变量边缘分布律

离散型

P { X = x i } = p i ⋅ = ∑ j = 1 ∞ p i j P\{X=x_i\}=p_{i\cdot}=\sum\limits_{j=1}^{\infty}p_{ij} P{X=xi}=pi=j=1pij

∑ i = 1 ∞ p i ⋅ = ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum\limits_{i=1}^{\infty}p_{i\cdot}=\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}p_{ij}=1 i=1pi=i=1j=1pij=1

连续型

P 1 ( x ) = ∫ − ∞ + ∞ p ( x , y ) d y P 2 ( y ) = ∫ − ∞ + ∞ p ( x , y ) d x \begin{aligned} P_1(x)=\int_{-\infty}^{+\infty}p(x,y)dy \\ P_2(y)=\int_{-\infty}^{+\infty}p(x,y)dx \end{aligned} P1(x)=+p(x,y)dyP2(y)=+p(x,y)dx

注意: 不能由边缘分布求联合分布。

二维随机变量条件概率

离散型

P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i, Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{p_{\cdot j}} P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij

连续型

Y = y : F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f ( u , y ) d u f Y ( y ) , f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) X = x : F Y ∣ X ( y ∣ x ) = ∫ − ∞ y f ( x , v ) d v f X ( x ) , f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f ( x , y ) = f Y ( y ) f X ∣ Y ( x ∣ y ) = f X ( x ) f Y ∣ X ( y ∣ x ) \begin{aligned} &Y=y: \\ & \quad F_{X|Y}(x|y)=\frac{\int_{-\infty}^{x}f(u,y)du}{f_Y(y)} ,\quad f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)} \\ &X=x: \\ & \quad F_{Y|X}(y|x)=\frac{\int_{-\infty}^{y}f(x,v)dv}{f_X(x)} ,\quad f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)} \\ &f(x,y)=f_Y(y)f_{X|Y}(x|y)=f_X(x)f_{Y|X}(y|x) \end{aligned} Y=y:FXY(xy)=fY(y)xf(u,y)du,fXY(xy)=fY(y)f(x,y)X=x:FYX(yx)=fX(x)yf(x,v)dv,fYX(yx)=fX(x)f(x,y)f(x,y)=fY(y)fXY(xy)=fX(x)fYX(yx)

注意: X 、 Y X、Y XY 相互独立时, F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y) ,此时由边缘分布律可以唯一确定联合分布。

二维随机变量函数的分布

和分布( Z = X + Y Z=X+Y Z=X+Y

F Z ( z ) = ∫ − ∞ z g ( u ) d u g ( u ) = ∫ − ∞ + ∞ f ( x , u − x ) d x f Z ( z ) = g ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x \begin{aligned} F_Z(z)&=\int_{-\infty}^{z}g(u)du \\ g(u)&=\int_{-\infty}^{+\infty}f(x,u-x)dx \\ f_Z(z)&=g(z)= \int_{-\infty}^{+\infty}f(x,z-x)dx \end{aligned} FZ(z)g(u)fZ(z)=zg(u)du=+f(x,ux)dx=g(z)=+f(x,zx)dx

X , Y X,Y X,Y 相互独立,则:
f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)dy fZ(z)=+fX(x)fY(zx)dx=+fX(zy)fY(y)dy
推广:

一般地,若 X i X_i Xi相互独立, Z = ∑ a i X i Z=\sum a_iX_i Z=aiXi

  1. X i ∼ N ( μ i , σ i 2 ) ⟹ Z ∼ N ( ∑ a i μ i , ∑ a i 2 σ i 2 ) X_i \sim N(\mu_i, \sigma_i^2) \Longrightarrow Z \sim N(\sum a_i\mu_i,\sum a_i^2\sigma_i^2) XiN(μi,σi2)ZN(aiμi,ai2σi2)
  2. X i ∼ b ( n i , p ) ⟹ Z ∼ b ( ∑ n i , p ) X_i \sim b(n_i, p) \Longrightarrow Z \sim b(\sum n_i,p) Xib(ni,p)Zb(ni,p)
  3. X i ∼ π ( λ i ) ⟹ Z ∼ π ( ∑ λ i ) X_i \sim \pi(\lambda_i) \Longrightarrow Z \sim \pi(\sum \lambda_i) Xiπ(λi)Zπ(λi)

最大最小值分布( Z = M a x 、 Z = M i n Z=Max、Z=Min Z=MaxZ=Min X 、 Y X、Y XY相互独立)

M = max ⁡ ( X , Y ) M=\max(X,Y) M=max(X,Y)
F M ( z ) = P { M ≤ z } = P { max ⁡ ( X , Y ) ≤ z } = P { X ≤ z , Y ≤ z } = F X ( z ) F Y ( z ) \begin{aligned} F_M(z)&=P\{M\le z\} \\ &=P\{\max(X,Y)\le z\} \\ &=P\{X\le z, Y\le z\} \\ &=F_X(z)F_Y(z) \end{aligned} FM(z)=P{Mz}=P{max(X,Y)z}=P{Xz,Yz}=FX(z)FY(z)
N = min ⁡ ( X , Y ) N=\min(X,Y) N=min(X,Y)
F N ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { min ⁡ ( X , Y ) > z } = 1 − P { X > z , Y > z } = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] \begin{aligned} F_N(z)&=P\{N\le z\} \\ &=1-P\{N>z\} \\ &=1-P\{\min(X,Y) > z\} \\ &=1-P\{X> z, Y> z\} \\ &=1-[1-F_X(z)][1-F_Y(z)] \end{aligned} FN(z)=P{Nz}=1P{N>z}=1P{min(X,Y)>z}=1P{X>z,Y>z}=1[1FX(z)][1FY(z)]

商的分布( Z = X Y Z=\frac{X}{Y} Z=YX

f Z ( z ) = ∫ − ∞ + ∞ ∣ y ∣ f ( z y , y ) d y f_Z(z)=\int_{-\infty}^{+\infty}|y|f(zy,y)dy fZ(z)=+yf(zy,y)dy

X 、 Y X、Y XY相互独立, f Z ( z ) = ∫ − ∞ + ∞ ∣ y ∣ f X ( z y ) f Y ( y ) d y f_Z(z)=\int_{-\infty}^{+\infty}|y|f_X(zy)f_Y(y)dy fZ(z)=+yfX(zy)fY(y)dy

差的分布( Z = X − Y Z=X-Y Z=XY

f Z ( z ) = ∫ − ∞ + ∞ f ( z + y , y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f(z+y, y)dy fZ(z)=+f(z+y,y)dy

积的分布( Z = X Y Z=XY Z=XY

f Z ( z ) = ∫ − ∞ + ∞ f ( x , z x ) 1 ∣ x ∣ d x = ∫ − ∞ + ∞ f ( z y , y ) 1 ∣ y ∣ d y f_Z(z)=\int_{-\infty}^{+\infty}f(x,\frac{z}{x})\frac{1}{|x|}dx=\int_{-\infty}^{+\infty}f(\frac{z}{y},y)\frac{1}{|y|}dy fZ(z)=+f(x,xz)x1dx=+f(yz,y)y1dy

总结: 二维随机变量函数的分布,一般解题步骤如下:

  1. 先求 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y) 的分布函数 F Z ( z ) F_Z(z) FZ(z)
  2. f Z ( z ) = F Z ′ ( z ) f_Z(z)=F'_Z(z) fZ(z)=FZ(z)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴不会敲代码吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值