《概率论与数理统计》学习笔记3-二维随机变量及其分布

目录

二维随机变量及其分布函数

二维离散型随机变量及其概率分布

连续型随机变量及其概率密度

条件分布

二维随机变量的函数分布


二维随机变量及其分布函数

        二维随机变量的定义:

                X和Y是定义在随机试验E的样本空间Ω上的两个随机变量,他们构成的向量(𝑋,𝑌)称为二维随机变量/向量

        二维随机变量分布函数的定义:

                {𝑋≤𝑥}与{𝑌≤𝑦}的交事件记为{𝑋≤𝑥,𝑌≤𝑦},则称

                为二维随机变量(𝑋𝑌)的分布函数/联合分布函数

        二维随机变量分布函数𝐹(𝑥,𝑦)的性质:

                1)

                        对任意固定x:

                2)𝐹(𝑥,𝑦)对每个固定变量是单调不减函数

                3)𝐹(𝑥,𝑦)关于x和y均右连续

                4)对任意的𝑥1<𝑥2,𝑦1<𝑦2,有:

        边缘分布

                随机变量X的分布函数为𝐹𝑋(𝑥),随机变量Y的分布函数为𝐹𝑌(𝑦),分别称为二维随机变量(𝑋,𝑌)的关于X和关于Y的边缘分布函数

        随机变量的独立性:

                二维随机变量(𝑋,𝑌)与边缘分布函数𝐹𝑋(𝑥)和𝐹𝑌(𝑦)满足:

                则称X与Y相互独立

二维离散型随机变量及其概率分布

        二维离散型随机变量的定义:

                如果二维随机变量(𝑋,𝑌)所有可能取值是有限对或可列无限对,则称(𝑋,𝑌)是二维离散型随机变量

        二维离散型随机变量的概率分布/联合分布律:

                上式称为二维随机变量(𝑋,𝑌)的概率分布或联合分布律

        边缘概率分布/边缘分布律:

                上式称为二维随机变量(𝑋,𝑌)关于X的边缘分布律

        离散型随机变量的独立性:

                上式为离散型随机变量X和Y相互独立的充分必要条件

连续型随机变量及其概率密度

        二维连续型随机变量及概率密度的定义:

                 称(𝑋,𝑌)为二维连续型随机变量,𝐹(𝑥,𝑦)为分布函数,𝑓(𝑥,𝑦)为联合概率密度

        概率密度𝑓(𝑥,𝑦)的性质:

                1)𝑓(𝑥,𝑦)≥0

                2)

                3)若𝑓(𝑥,𝑦)在(𝑥,𝑦)处连续:

                4)

        边缘概率密度:

                𝑓𝑋(𝑥)称为二维随机变量𝑋,𝑌关于X的边缘概率密度

        连续型随机变量的独立性:

                上式为连续型随机变量X和Y相互独立的充分必要条件

        二维均匀分布:

                称(X,Y)在区域D上服从均匀分布

        二维正态分布:

                称(X,Y)服从参数为(𝜇1,𝜇2,𝜎1,𝜎2,𝜌)的二维正态分布,记作:

                X和Y相互独立的充分必要条件是𝜌=0

条件分布

        离散型随机变量的条件分布:

                为在条件𝑌=𝑌𝑗下随机变量X的条件概率分布

        连续型随机变量的条件分布:

                若极限存在,则称此极限值𝐹𝑋|𝑌(𝑋|𝑌)为在Y=y的条件下X的条件分布函数

                𝑓𝑋|𝑌(𝑥|𝑦)称为在Y=y的条件下X的条件概率密度

二维随机变量的函数分布

        二维离散型随机变量的函数分布:

                列出𝑋+𝑌、𝑋/𝑌所有可能取值,计算二维变量中所有符合条件的概率之和

        二维连续型随机变量的函数分布:

                Z的函数分布为:

                其概率密度为:

        X+Y的概率密度密度:

                如果X和Y相互独立:

                若X和Y服从正态分布𝑋~𝑁(𝜇1,𝜎12)和𝑌~𝑁(𝜇2,𝜎22),则Z=X+Y也服从正态分布,且:

        𝑀=𝑚𝑎𝑥(𝑥,𝑦)和𝑁=𝑚𝑖𝑛(𝑥,𝑦)的分布函数:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Erq1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值