【概率论与数理统计(研究生课程)】知识点总结10(方差分析)

原文地址:【概率论与数理统计(研究生课程)】知识点总结10(方差分析)

单因素方差分析

H 0 : μ 1 = μ 2 = ⋯ = μ n ; H 1 : μ 1 , μ 2 , ⋯   , μ n H_0:\mu_1=\mu_2=\cdots=\mu_n;\quad H_1:\mu_1,\mu_2,\cdots,\mu_n H0:μ1=μ2==μn;H1:μ1,μ2,,μn不全相等

方差分析表

方差来源平方和自由度均方F比
因素A S A 2 S_A^2 SA2 f A = r − 1 f_A=r-1 fA=r1 M S A = S A 2 f A MS_A=\frac{S_A^2}{f_A} MSA=fASA2 F = M S A M S e F=\frac{MS_A}{MS_e} F=MSeMSA
误差e S e 2 S_e^2 Se2 f e = n − r f_e=n-r fe=nr M S e = S e 2 f e MS_e=\frac{S_e^2}{f_e} MSe=feSe2
总和 S T 2 = S A 2 + S e 2 S_T^2=S_A^2+S_e^2 ST2=SA2+Se2 f T = f A + f e = n − 1 f_T=f_A+f_e=n-1 fT=fA+fe=n1

S A 2 = ∑ i = 1 r m i ( y ˉ i ⋅ − y ˉ ) 2 = ∑ i = 1 r m i y ˉ i ⋅ 2 − n y ˉ 2 , f A = r − 1 S e 2 = ∑ i = 1 r ∑ j = 1 m ( y i j − y ˉ i ⋅ ) 2 = ∑ i = 1 r ( n i − 1 ) S i 2 = S T 2 − S A 2 , f e = n − r S T 2 = ∑ i = 1 r ∑ j = 1 m i ( y i j − y ˉ ) 2 = ∑ i = 1 r ∑ j = 1 m i y i j 2 − n y ˉ 2 , f T = n − 1 \begin{aligned} S_A^2&=\sum\limits_{i=1}^{r}m_i(\bar{y}_{i\cdot}-\bar{y})^2=\sum\limits_{i=1}^{r}m_i\bar{y}_{i\cdot}^2-n\bar{y}^2,f_A=r-1 \\ S_e^2&=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{m}(y_{ij}-\bar{y}_{i\cdot})^2=\sum\limits_{i=1}^{r}(n_i-1)S_i^2=S_T^2-S_A^2,f_e=n-r \\ S_T^2&=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{m_i}(y_{ij}-\bar{y})^2=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{m_i}y_{ij}^2-n\bar{y}^2,f_T=n-1 \end{aligned} SA2Se2ST2=i=1rmi(yˉiyˉ)2=i=1rmiyˉi2nyˉ2,fA=r1=i=1rj=1m(yijyˉi)2=i=1r(ni1)Si2=ST2SA2,fe=nr=i=1rj=1mi(yijyˉ)2=i=1rj=1miyij2nyˉ2,fT=n1

一般来说,如果题目中没有告诉任何表中信息,通过先求 S A 2 S_A^2 SA2、再求 S T 2 S_T^2 ST2、最后求 S e 2 S_e^2 Se2的顺序求解。
S e 2 S_e^2 Se2 S i 2 S_i^2 Si2是每个因素的样本方差。

对给定的 α \alpha α可作出如下判断:

  1. 如果 F > F α ( f A , f e ) F>F_{\alpha}(f_A,f_e) F>Fα(fA,fe),则认为因素A显著
  2. F ≤ F α ( f A , f e ) F\le F_\alpha(f_A,f_e) FFα(fA,fe),则说明因素A不显著

关系强度

R 2 = S A 2 S T 2 R^2=\frac{S_A^2}{S_T^2} R2=ST2SA2

R R R表明了自变量与因变量之间的关系强度。

多重比较问题

若果上述问题拒绝原假设,即均值不全相等,那究竟是哪几个之间不相等?通过对总体均值之间的配对比较来进一步检验到底哪些均值之间存在差异。

多重比较方法有很多种,这里介绍费希尔提出的最小显著差异方法 L S D LSD LSD,具体步骤如下:

  1. 提出原假设和备择假设: H 0 : μ i = μ j ; H 1 : μ i ≠ μ j H_0:\mu_i=\mu_j;\quad H_1:\mu_i\neq\mu_j H0:μi=μj;H1:μi=μj
  2. 构造统计量 y ˉ i ⋅ − y ˉ j ⋅ − ( μ i − μ j ) ( 1 m i + 1 m j ) M S e ∼ t ( n − r ) \frac{\bar{y}_{i\cdot}-\bar{y}_{j\cdot}-(\mu_i-\mu_j)}{\sqrt{(\frac{1}{m_i}+\frac{1}{m_j})MS_e}}\sim t(n-r) (mi1+mj1)MSe yˉiyˉj(μiμj)t(nr)
  3. 计算 y ˉ i ⋅ − y ˉ j ⋅ \bar{y}_{i\cdot}-\bar{y}_{j\cdot} yˉiyˉj L S D LSD LSD,其中 L S D LSD LSD计算公式为: L S D = t α 2 ( n − r ) M S e ( 1 m i + 1 m j ) LSD=t_{\frac{\alpha}{2}}(n-r)\sqrt{MS_e(\frac{1}{m_i}+\frac{1}{m_j})} LSD=t2α(nr)MSe(mi1+mj1)
  4. 根据显著性水平 α \alpha α做出决策,如果 ∣ y ˉ i ⋅ − y ˉ j ⋅ ∣ > L S D |\bar{y}_{i\cdot}-\bar{y}_{j\cdot}|>LSD yˉiyˉj>LSD则拒绝原假设,否则接受原假设。

双因素方差分析

检验假设: H 01 : α 1 = α 2 = ⋯ = α r = 0 ; H 02 : β 1 = β 2 = ⋯ = β s = 0 H_{01}:\alpha_1=\alpha_2=\cdots=\alpha_r=0;\quad H_{02}:\beta_1=\beta_2=\cdots=\beta_s=0 H01:α1=α2==αr=0;H02:β1=β2==βs=0

方差分析表

方差来源平方和自由度均方F比
因素A S A 2 S_A^2 SA2 f A = r − 1 f_A=r-1 fA=r1 M S A = S A 2 f A MS_A=\frac{S_A^2}{f_A} MSA=fASA2 F A = M S A M S e ∼ F ( r − 1 , ( r − 1 ) ( s − 1 ) ) F_A=\frac{MS_A}{MS_e}\sim F(r-1, (r-1)(s-1)) FA=MSeMSAF(r1,(r1)(s1))
因素B S B 2 S_B^2 SB2 f B = s − 1 f_B=s-1 fB=s1 M S B = S B 2 f B MS_B=\frac{S_B^2}{f_B} MSB=fBSB2 F B = M S B M S e ∼ F ( s − 1 , ( r − 1 ) ( s − 1 ) ) F_B=\frac{MS_B}{MS_e}\sim F(s-1, (r-1)(s-1)) FB=MSeMSBF(s1,(r1)(s1))
误差e S e 2 S_e^2 Se2 f e = ( r − 1 ) ( s − 1 ) f_e=(r-1)(s-1) fe=(r1)(s1) M S e = S e 2 f e MS_e=\frac{S_e^2}{f_e} MSe=feSe2
总和 S T 2 = S A 2 + S e 2 S_T^2=S_A^2+S_e^2 ST2=SA2+Se2 f T = f A + f B + f e = r s − 1 f_T=f_A+f_B+f_e=rs-1 fT=fA+fB+fe=rs1

S A 2 = s ∑ i = 1 r ( y ˉ i ⋅ − y ˉ ) 2 = s ∑ i = 1 r y ˉ i ⋅ 2 − r s y ˉ 2 , f A = r − 1 S B 2 = r ∑ j = 1 s ( y ˉ ⋅ j − y ˉ ) 2 = r ∑ j = 1 s y ˉ ⋅ j 2 − r s y ˉ 2 , f B = s − 1 S e 2 = ∑ i = 1 r ∑ j = 1 s ( y i j − y ˉ i ⋅ − y ˉ ⋅ j + y ˉ ) 2 = S T 2 − S A 2 − S B 2 , f e = ( r − 1 ) ( s − 1 ) S T 2 = ∑ i = 1 r ∑ j = 1 s ( y i j − y ˉ ) 2 = ∑ i = 1 r ∑ j = 1 s y i j 2 − r s y ˉ 2 , f T = r s − 1 \begin{aligned} S_A^2&=s\sum\limits_{i=1}^{r}(\bar{y}_{i\cdot}-\bar{y})^2=s\sum\limits_{i=1}^{r}\bar{y}_{i\cdot}^2-rs\bar{y}^2,f_A=r-1 \\ S_B^2&=r\sum\limits_{j=1}^{s}(\bar{y}_{\cdot j}-\bar{y})^2=r\sum\limits_{j=1}^{s}\bar{y}_{\cdot j}^2-rs\bar{y}^2,f_B=s-1 \\ S_e^2&=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(y_{ij}-\bar{y}_{i\cdot}-\bar{y}_{\cdot j}+\bar{y})^2=S_T^2-S_A^2-S_B^2,f_e=(r-1)(s-1) \\ S_T^2&=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}(y_{ij}-\bar{y})^2=\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{s}y_{ij}^2-rs\bar{y}^2,f_T=rs-1 \end{aligned} SA2SB2Se2ST2=si=1r(yˉiyˉ)2=si=1ryˉi2rsyˉ2,fA=r1=rj=1s(yˉjyˉ)2=rj=1syˉj2rsyˉ2,fB=s1=i=1rj=1s(yijyˉiyˉj+yˉ)2=ST2SA2SB2,fe=(r1)(s1)=i=1rj=1s(yijyˉ)2=i=1rj=1syij2rsyˉ2,fT=rs1

对给定的 α \alpha α:

  1. H 01 H_{01} H01的拒绝域为: F A ≥ F α ( r − 1 , ( r − 1 ) ( s − 1 ) ) F_A\ge F_\alpha(r-1,(r-1)(s-1)) FAFα(r1,(r1)(s1))
  2. H 02 H_{02} H02的拒绝域为: F B ≥ F α ( s − 1 , ( r − 1 ) ( s − 1 ) ) F_B\ge F_\alpha(s-1,(r-1)(s-1)) FBFα(s1,(r1)(s1))

关系强度

R 2 = S A 2 + S B 2 S T 2 R^2=\frac{S_A^2+S_B^2}{S_T^2} R2=ST2SA2+SB2

R R R表明了两个自变量合起来与因变量之间的关系强度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴不会敲代码吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值