机器学习--基于逻辑回归的分类预测

1.简单介绍

逻辑回归(Logistic Regression,简称LR)虽然带有回归两个字,但它其实是一种分类模型。逻辑回归被广泛应用于各个领域之中,是当下最流行的学习算法之一。

2.优缺点
  • 优点:模型简单,模型的可解释性强,易于理解和实现;计算代价不高,速度很快,存储资源低
  • 缺点:容易欠拟合,分类精度不高
3.模型理解与推导
3.1 二分类问题

在二分类问题里,我们最终要得到的预测结果是离散的,并且预测结果只有两种情况,即 y ∈ { 0 , 1 } y\in \left \{ 0,1 \right \} y{0,1}
而线性回归模型的输出结果是连续的,且值域是整个实数集。
为了方便进行分类预测,我们需要一个函数,来帮助我们把线性回归模型的输出结果映射到(0,1)区间内,即得到概率预测值。

下面介绍一下Sigmod函数

3.2 Sigmod函数
函数形式

f ( x ) = 1 1 + e − x f(x) = \frac{1}{1+e^{-x} } f(x)=1+ex1

函数图像

在这里插入图片描述

函数特点
  • 容易求导,函数单调递增
  • 值域在(0,1)范围内
3.3 预测模型

线性回归的基本方程为:
g ( x ) = θ T x g \left ( x \right ) = \theta ^{T} x g(x)=θTx
联立线性回归方程与Sigmod函数得:
h θ ( x ) = 1 1 + e − θ T x h_{\theta } \left ( x \right ) =\frac{1}{1+e^{-\theta ^{T}x } } hθ(x)=1+eθTx1
最终求得的 h θ ( x ) h_{\theta}(x) hθ(x)就是我们所需要的预测模型。

3.4 模型解释

h θ ( x ) h_{\theta}(x) hθ(x)的输出值可以理解为:对一个输入值x,其预测结果为 y = 1 y = 1 y=1的概率估计。
即: h θ ( x ) = P ( y = 1 ∣ x ; θ ) h_{\theta } \left ( x \right ) = P\left ( y = 1|x;\theta \right ) hθ(x)=P(y=1x;θ)

  • 举例:(假设y = 0是类别0,y = 1是类别1)
  • h θ ( x ) = 0.7 h_{\theta}(x)=0.7 hθ(x)=0.7时,可以解释为:输入值x有0.7的概率属于类别1。

同时,因为二分类问题的可能预测结果只有两个,所以我们可以很容易推导出 y = 0 y=0 y=0的概率估计:
P ( y = 0 ∣ x ; θ ) + P ( y = 1 ∣ x ; θ ) = 1 P\left ( y = 0|x;\theta \right ) +P\left ( y = 1|x;\theta \right )=1 P(y=0x;θ)+P(y=1x;θ)=1
⟹ P ( y = 0 ∣ x ; θ ) = 1 − P ( y = 1 ∣ x ; θ ) \Longrightarrow P\left ( y = 0|x;\theta \right )=1-P\left ( y = 1|x;\theta \right ) P(y=0x;θ)=1P(y=1x;θ)
因此,我们可以把 h θ ( x ) = 0.5 h_{\theta}(x)=0.5 hθ(x)=0.5设为阈值:当 h θ ( x ) ≥ 0.5 h_{\theta}(x)≥0.5 hθ(x)0.5时,我们就预测 y = 1 y=1 y=1;当 h θ ( x ) < 0.5 h_{\theta}(x)<0.5 hθ(x)0.5时,就预测 y = 0 y = 0 y=0

再来看一下Sigmod函数,可以发现当且仅当 x ≥ 0 x≥0 x0时, f ( x ) ≥ 0.5 f(x)≥0.5 f(x)0.5,因此,当且仅当 θ T x ≥ 0 \theta ^{T}x≥0 θTx0时, h θ ( x ) ≥ 0.5 h_{\theta}(x)≥0.5 hθ(x)0.5
同理,当且仅当 θ T x < 0 \theta ^{T}x<0 θTx<0时, h θ ( x ) < 0.5 h_{\theta}(x)<0.5 hθ(x)<0.5

3.5 代价函数

作用:用来拟合模型里的参数 θ \theta θ。当 J ( θ ) J(\theta) J(θ)取得最小值时,所对应的 θ \theta θ即为所求。
形式
J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) J(\theta)= \frac{1}{m}\sum_{i=1}^{m} Cost(h_{\theta } ( x^{(i)} ),y^{(i)} ) J(θ)=m1i=1mCost(hθ(x(i)),y(i))
其中:
C o s t ( h θ ( x ) , y ) = { − ln ⁡ ( h θ ( x ) ) y = 1 − ln ⁡ ( 1 − h θ ( x ) ) y = 0 Cost\left ( h_{\theta}\left ( x \right ) ,y \right ) =\left\{\begin{aligned} -\ln_{}{\left ( h_{\theta } \left ( x \right ) \right ) } & &{y=1} \\ -\ln_{}{\left ( 1-h_{\theta }\left ( x \right ) \right ) } &&{y=0} \\ \end{aligned}\right . Cost(hθ(x),y)={ln(hθ(x))ln(1hθ(x))y=1y=0
C o s t ( h θ ( x ) , y ) Cost\left ( h_{\theta}\left ( x \right ) ,y \right ) Cost(hθ(x),y)可简化为:
C o s t ( h θ ( x ) , y ) = − y ln ⁡ ( h θ ( x ) ) − ( 1 − y ) ln ⁡ ( 1 − h θ ( x ) ) Cost\left ( h_{\theta}\left ( x \right ) ,y \right ) =-y\ln_{}{\left ( h_{\theta } \left ( x \right ) \right ) } -(1-y)\ln_{}{\left ( 1-h_{\theta }\left ( x \right ) \right ) } Cost(hθ(x),y)=yln(hθ(x))(1y)ln(1hθ(x))
于是有:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta)= -\frac{1}{m}\left [ \sum_{i=1}^{m} y^{(i)} \ln_{}{\left ( h_{\theta } \left ( x^{(i)} \right ) \right ) } +(1-y^{(i)} )\ln_{}{\left ( 1-h_{\theta }\left ( x ^{(i)} \right ) \right ) } \right ] J(θ)=m1[i=1my(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]
求解 θ \theta θ 过程:(梯度下降法)
min ⁡ θ J ( θ ) \min_{\theta}J(\theta) θminJ(θ)
r e p e a t { θ j : = θ j − α ∑ i = 1 m ∂ ∂ θ j J ( θ ) } repeat\left \{ \theta _{j}:=\theta _{j}-\alpha \sum_{i=1}^{m}\frac{\partial }{\partial \theta _{j}} J(\theta) \right \} repeat{θj:=θjαi=1mθjJ(θ)}
⟹ r e p e a t { θ j : = θ j − α ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) } \Longrightarrow repeat\left \{ \theta _{j}:=\theta _{j} -\alpha \sum_{i=1}^{m} \left ( h_{\theta} \left ( x^{(i)} \right ) -y^{(i)} \right ) x_{j} ^{(i)} \right \} repeat{θj:=θjαi=1m(hθ(x(i))y(i))xj(i)}

4. 代码实现(python)
4.1 Demo实践
  • Step1 模型参数查看
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression

x_fearures = np.array([[-1,-2],[-2,-1],[-3,-2],[1,3],[2,1],[3,2]]) 
y_label = np.array([0,0,0,1,1,1])

lr_clf = LogisticRegression()
lr_clf = lr_clf.fit(x_fearures,y_label)

print(r'the weight of Logistic Regression is:',lr_clf.coef_)
print(r'the intercept of Logistic Regression is:',lr_clf.intercept_)

输出:
在这里插入图片描述

  • Step2 数据和模型可视化
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50)
plt.title(r'DataSet')
#plt.show()

nx = 100
ny = 200
x_min,x_max = plt.xlim()
y_min,y_max = plt.ylim()
x_grid,y_grid = np.meshgrid(np.linspace(x_min,x_max,nx),np.linspace(y_min,y_max,ny))
z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(),y_grid.ravel()])
z_proba = z_proba[:,1].reshape(x_grid.shape)
plt.contour(x_grid,y_grid,z_proba,[0.5])

plt.show()

输出:
在这里插入图片描述

  • Step3 可视化预测新样本
### 可视化预测新样本

plt.figure()

## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=
(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=
(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')
plt.show()

输出结果:
在这里插入图片描述

  • Step4 模型预测
## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)

输出结果:
在这里插入图片描述

4.2 基于鸢尾花(iris)数据集的逻辑回归分类实践
  • Step1 数据简单查看
## 基础函数库
import numpy as np 
import pandas as pd

## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

iris_features.head()
#iris_features.tail()

输出结果:
在这里插入图片描述

  • Step2 可视化描述
## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target

## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

输出结果:
在这里插入图片描述

  • Step3 利用逻辑回归模型进行分类预测
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, 
test_size = 0.2, random_state = 2020)

## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression

## 定义 逻辑回归模型
clf = LogisticRegression(random_state=0, solver='lbfgs')

# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
            
# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

输出结果:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值