数字图像处理(DIP)的基本概念

本文介绍了数字图像处理(DIP)的基本概念,包括digital image的定义,像素及其相互关系,以及DIP的主要步骤。重点讨论了数字图像获取过程中的采样(sampling)和量化(quantization),并解释了这两个过程如何决定图像的空间分辨率(spatial resolution)和强度分辨率(intensity resolution)。同时,提到了采样不足和量化不足可能导致的图像质量问题,如块状感和伪轮廓。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一.什么是digital image?什么是像素?

二.什么是digital image processing?

三.fundamental steps in DIP&components of general-purposed digital image processing system

四.数字图像的获取

4.1数字图像的获取:digitization = quantization + sampling

4.2采样和量化引入的概念:spatial resolution和intensity resolution

4.3采样不足和量化不足带来的问题



一.什么是digital image?什么是像素?像素间的关系

Image可以看作是一个二维函数f(x,y),x和y代表了坐标,而f代表指定坐标位置的像素的intensity(或是grey level,两者通用)。当f(x,y)的x,y和f均为有限离散值的时候,我们称该image为digital image。显而易见,digital image由有限个像素组成,可以看成一个二维数组。

假设连续图片为f(x,y):R^{2}\to R,而数字图像为f(i,j):Z^{2}\to Z。连续图像的

(x,y)坐标可能具有实际的物理意义(空间位置),但是(i,j)已经是纯粹表示像素的坐标位置了。幅值f也是一样:对于连续图像而言,f就是表明其实际的物理光强;而对于数字图像而言,f代表的是灰度级。

 我们称矩形中的元素a(i,j)为像素。

对于数字图像而言,像素之间存在空间上的相对关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值