全面地介绍 将二维数据矩阵插值拟合为二维曲面方程——基于matlab

前言

要利用matlab将二维数据矩阵拟合成一个二维曲面方程,首先,我们得明白什么是插值和拟合。下面,从对洋流数据的处理入手,先以一个基本的流程为例,进行问题的概述,然后介绍两种具体的方法。

拟合插值

原理初析

插值

根据已知的数据点,生成一个连续的函数,可以在任意位置求值。matlab 提供了多种插值方法,如线性插值、 B B B-样条插值、多项式插值等。

这些方法的优缺点和适用场合各有不同,一般来说,线性插值比较简单和快速,但可能不够平滑; B B B -样条插值比较平滑和灵活,但可能不够精确;多项式插值比较精确和光滑,但可能出现奇异或震荡现象。具体选择哪种方法,要根据数据的特点和目的来决定。

matlab中,可以使用 i n t e r p 2 interp2 interp2 函数或 g r i d d e d I n t e r p o l a n t griddedInterpolant griddedInterpolant 类来进行二维插值,它们都可以指定不同的插值方法。例如,如果已知的数据矩阵是 V {V} V,想要在 X q {Xq} Xq Y q {Yq} Yq 的网格上进行插值,可以使用以下代码:


% 线性插值
Vq1 = interp2(V,Xq,Yq,'linear');
% B-样条插值
Vq2 = interp2(V,Xq,Yq,'spline');
% 多项式插值
Vq3 = interp2(V,Xq,Yq,'pchip');

拟合

根据插值得到的函数,寻找一个合适的数学模型,可以用一个简洁的表达式来近似描述数据的规律。

matlab提供了多种拟合方法,如线性回归、非线性回归、最小二乘法等。这些方法的原理和应用也各有不同,一般来说,线性回归比较简单和稳定,但可能不够灵活;非线性回归比较灵活和通用,但可能不够稳定;最小二乘法比较优化和精确,但可能不够简洁。具体选择哪种方法,要根据数据的分布和形状来决定。matlab中,可以使用 f i t fit fit 函数或 f i t t y p e fittype fittype 类来进行二维拟合,它们都可以指定不同的拟合方法。例如,如果插值得到的函数是 V q {Vq} Vq,想要用一个二次多项式来拟合,可以使用以下代码:

% 线性回归
ft1 = fittype('poly22'); % 二次多项式
f1 = fit([Xq(:),Yq(:)],Vq1(:),ft1); % 拟合
% 非线性回归
ft2 = fittype('a*exp(b*x)*sin(c*y)'); % 非线性函数
f2 = fit([Xq(:),Yq(:)],Vq2(:),ft2); % 拟合
% 最小二乘法
ft3 = fittype('a*x^2+b*y^2+c*x*y+d*x+e*y+f','problem','f'); % 二次多项式,f是固定参数
f3 = fit([Xq(:),Yq(:)],Vq3(:),ft3,'problem',0); % 拟合

拟合完成后,可以用 f1,f2,f3等变量来表示拟合得到的二维曲面方程,也可以用 c o e f f v a l u e s coeffvalues coeffvalues 函数来提取方程的系数。

例如,如果想要得到 f1的表达式,可以使用以下代码:

% 提取系数
c1 = coeffvalues(f1);
% 构造表达式
s1 = sprintf('V = %.4f*X^2 + %.4f*Y^2 + %.4f*X*Y + %.4f*X + %.4f*Y + %.4f',c1(1),c1(2),c1(3),c1(4),c1(5),c1(6));

拟合优度的评估

对于方程的拟合,如果要做可行性分析的话,那必然要对拟合优度进行评估。

拟合优度是一种衡量拟合结果与实际数据之间的差异的指标。拟合优度越高,说明拟合结果越能反映数据的真实情况。拟合优度的评估方法有很多种,常见的有残差分析、决定系数、均方根误差等。不同的评估方法有不同的含义和应用场景,比如残差分析可以检验拟合函数的合理性,决定系数可以衡量拟合函数对数据变化的解释程度,均方根误差可以衡量拟合函数的预测精度等。

具体实例的展开

下面,将以两种方法进行具体问题的求解。

B-样条插值+最小二乘法

B-样条插值法

B B B-样条(B-spline)是一种基于多项式的插值方法,它可以构造出平滑且连续的曲线或曲面。b-样条的优点是可以灵活地控制插值的阶数、节点、边界条件等,从而得到不同的插值效果。b-样条的缺点是计算量较大,且难以表示复杂的形状。

B B B -样条的数学定义如下:

设有 n + 1 n+1 n+1 个数据点 ( x i , y i ) \left(x_i,y_i\right) (xi,yi),其中 i = 0 , 1 , … , n i=0,1,\dots,n i=0,1,,n ,且 x 0 < x 1 < ⋯ < x n x_0<x_1<\dots<x_n x0<x1<<xn B B B-样条插值法的目标是找到一个函数 f ( x ) f\left(x\right) f(x),使得 f ( x i ) = y i f\left(x_i\right)=y_i f(xi)=yi,对所有 i i i 成立,且 f ( x ) f\left(x\right) f(x) 在每个区间 [ x i , x i + 1 ] \left[x_i,x_{i+1}\right] [xi,xi+1] 上是一个 k k k 阶多项式,其中 k k k 是给定的插值阶数,通常为 3 3 3 4 4 4

为了构造这样的函数,我们需要引入一个节点序列 t 0 , t 1 , … , t n + k t_0,t_1,\dots,t_{n+k} t0,t1,,tn+k ,其中 t i t_i ti 是一个实数,且满足 t 0 ≤ t 1 ≤ ⋯ ≤ t n + k t_0\le t_1\le \dots\le t_{n+k} t0t1tn+k。节点序列的作用是划分数据点的区间,并确定每个区间上的多项式的系数。根据节点序列,我们可以定义一组基函数 B i , k ( x ) B_{i,k}(x) Bi,k(x) ,其中 i = 0 , 1 , … , n , k = 1 , 2 , … i=0,1,\dots,n,k=1,2,\dots i=0,1,,nk=1,2,,满足以下递推公式:

B i , 1 ( x ) = { 1 , t i ≤ x < t i + 1 0 , otherwise B_{i,1}(x)=\begin{cases}1,&t_i\le x<t_{i+1}\\0,&\text{otherwise}\end{cases} Bi,1(x)={

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jaysonder726

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值