【Transformer模型训练参数】

训练Transformer模型通常涉及提供大量的输入数据和对应的标准答案,这个过程称为监督学习。在训练过程中,模型会尝试学习如何从输入数据映射到正确的输出,以此来最小化预测结果和实际答案之间的差异。
Transformer模型由编码器(Encoder)和解码器(Decoder)两部分组成,每部分都包含多个相同的层,每层都有多个参数。在训练过程中,以下参数会被调整:


编码器参数:编码器由多个编码器层组成,每个层包含自注意力机制(self-attention)和前馈神经网络(feed-forward neural network)。自注意力机制中的参数包括查询(query)、键(key)、值(value)的权重矩阵和偏置项,前馈网络中的参数包括两个线性变换的权重矩阵和偏置项。


解码器参数:解码器的结构与编码器类似,但每个解码器层还包含一个额外的注意力机制,用于关注编码器的输出。因此,解码器层不仅包含自注意力和前馈网络的参数,还包含用于编码器-解码器注意力的参数。


共享参数:在某些Transformer模型的变体中,输入嵌入(input embeddings)、输出嵌入(output embeddings)和最终线性变换的权重可能会被共享。


层归一化参数:每个子层(自注意力和前馈网络)的输出通常会通过层归一化(Layer Normalization),这也涉及到一些可学习的参数。


位置编码参数:虽然位置编码通常是固定的,但在某些模型中,位置编码也可以是可学习的参数。


通过反向传播和优化算法(如Adam),这些参数会在训练过程中不断调整,以便模型能够更好地理解输入数据和生成正确的输出。训练完成后,这些参数就固定下来,模型可以用来进行推理(inference),即根据输入数据预测输出。

在反向传播和优化算法的过程中,几乎所有的模型参数都是可优化的,也就是说,它们会在训练过程中通过梯度下降算法进行调整。具体来说,以下是一些会被优化的参数:


权重矩阵(Weights):这些是模型中最主要的参数,它们存在于自注意力机制、前馈神经网络、以及编码器和解码器之间的注意力机制中。权重矩阵决定了输入数据如何被转换和组合。


偏置项(Biases):与权重矩阵一起,偏置项在神经网络中调整激活函数的输出。


层归一化参数(Layer Normalization Parameters):这些参数包括每个层归一化组件中的缩放(scale)和平移(shift)参数。


位置编码(Positional Encodings):在某些Transformer模型中,位置编码可以是可训练的参数,允许模型学习位置信息。


以下是一些通常固定不变的参数或设置:


模型架构(Model Architecture):模型的层数、每层的头数(在多头注意力中)、以及每个头的维度等架构决策在训练前就已经确定,并在训练过程中保持不变。


超参数(Hyperparameters):学习率、批次大小(batch size)、训练轮数(epochs)等超参数不是通过训练学习得到的,而是在训练前设定好的。


固定的位置编码(Fixed Positional Encodings):在原始的Transformer模型中,位置编码是根据预定义的公式生成的,不是通过训练学习得到的。


词嵌入(Word Embeddings):虽然词嵌入在训练过程中会被优化,但在某些情况下,如果使用了预训练的词嵌入并选择冻结它们,那么这些词嵌入参数在训练过程中将保持不变。


在训练过程中,通过计算损失函数(如交叉熵损失)来衡量模型的预测和实际答案之间的差异,然后使用反向传播算法计算损失函数关于每个可训练参数的梯度。优化算法(如Adam、SGD等)利用这些梯度来更新参数,以减少损失。这个过程在多个训练周期(epochs)中重复进行,直到模型的性能达到某个满意的水平或者不再显著提升为止。

实际上,Transformer模型中的编码器和解码器的参数都会在训练过程中被优化。

## 可训练参数
编码器参数
编码器中的每一层都包含以下可训练参数:

自注意力机制参数:

权重矩阵W^Q, W^K, W^V:用于生成查询(Q)、键(K)、值(V)的线性变换。
输出权重矩阵W^O:用于自注意力输出的线性变换。
相关的偏置项。
前馈神经网络参数:

第一层线性变换的权重和偏置。
第二层线性变换的权重和偏置。
层归一化参数:

缩放(γ)和平移(β)参数。
解码器参数
解码器中的每一层包含与编码器类似的参数,以及额外的用于编码器-解码器注意力机制的参数:

自注意力机制参数(与编码器相同)。

编码器-解码器注意力机制参数:

权重矩阵W^Q, W^K, W^V和偏置项,用于关注编码器输出。
前馈神经网络参数(与编码器相同)。

层归一化参数(与编码器相同)。

其他共享参数
嵌入层参数:

词嵌入权重。
位置嵌入权重(如果位置嵌入是可训练的)。
输出层参数:

输出线性层的权重和偏置。
如果使用了共享嵌入,输出嵌入与输入嵌入共享权重。

## 固定参数
模型架构相关的参数:

层数(编码器和解码器的层数)。
多头注意力中的头数。
每个头的大小或维度。
前馈网络中的隐藏层大小。
超参数:

学习率(可能会动态调整)。
批次大小(batch size)。
训练轮数(epochs)。
固定的位置编码(如果使用):

根据预定义的公式生成的位置编码。
其他固定设置:

激活函数(如ReLU或GELU)。
损失函数(如交叉熵损失)。
正则化方法(如dropout率)。
在训练过程中,编码器和解码器的参数都会通过反向传播算法进行优化。优化的目标是减少模型输出和真实答案之间的差异,这通常通过一个损失函数来衡量。优化算法(如Adam)会根据损失函数相对于每个参数的梯度来更新这些参数。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值