NumPy是使用Python进行科学计算的基础软件包。
导入:
import numpy as np
NumPy 提供了一个非常强大的N维数组对象 Ndarray。
ndarray数组包含两部分,实际的数据和描述数据的元数据(数据维度、数据类型等),用轴表示保存数组的维度,秩表示轴的数量。
>>>a = nd.array([[1,2,3],[4,5,6]])
>>>a
array([[1,2,3],
[4,5,6]])
>>>print(a)#ndarray对象输出成[],元素由空格分隔
[[1 2 3],
[4 5 6]]
>>>print(type(a))
<class 'numpy.ndarray'>
ndarray数组创建:
1.x = np.array(list/tuple[,dtype])
>>>li = [1,2,3,4.1]
>>>a = np.array(li,dtype='int32')
>>>print(a)
[1,2,3,4]
2.使用numpy函数
>>>a = np.arange(5);print(a) #类似range()函数,产生从0到n-1的一位数组
[0,1,2,3,4]
>>>a = np.ones((3,2),dtype='int32');print(a) #根据指定的(n,m)形状生成全1数组
[[1 1]
[1 1]
[1 1]]
>>>a = np.zeros((3,2));print(a) #同上生成全0数组
[[0 0]
[0 0]
[0 0]]
>>>a = np.full((2,3),2.1);print(a)#根据指定的(n,m)形状生成同值数组
[[2.1 2.1 2.1]
[2.1 2.1 2.1]]
>>>a = np.eye(2);print(a) #生成n*n矩阵,对角线为1,其它全为0
[[1. 0.]
[0. 1.]]
>>>b = np.ones_like(a)
>>>b = np.zeros_like(a)
>>>b = np.full_like(a,val)#上述函数演变而成,只是依据a的形状
>>>a = np.linspace(1,10,endpoint=False);print(a)#根据起止等间距填充数据
[1. 3.25 5.5 7.75]
>>>c = np.concatenate((a,b))#将多个数组合并成为一个新数组
ndarray对象属性:
属性 | 说明 |
---|---|
.shape | 尺寸,即对于矩阵,n行m列 |
.ndim | 秩,即轴的数量或维度的数量 |
.size | 元素的个数,相当于.shape中的n*m |
.dtype | 元素的类型 |
.itemsize | 每个元素的大小,以字节为单位 |
ndarray数组维度变换:
>>>a = ones((2,3,4),dtype=np.int32)
>>>a.reshape((3,8))#不改变原数组,返回一个shape形状的新数组
array([[1 1 ... 1 1]
[1 1 ... 1 1]
[1 1 ... 1 1]])
>>>a.resize((3,8))#同.reshape()但改变原数组
>>>a.fltten()#原数组不变,返回降维后的一维数组
array([1,1...1,1])
>>>a.swapaxes(1,2)#交换轴数量,不改变原数组(轴从0开始索引)
array([[[1 1 1]
[1 1 1]
[1 1 1]
[1 1 1]]
[[1 1 1]
[1 1 1]
[1 1 1]
[1 1 1]]])
ndarray数组类型变换:
>>>a = np.ones((2,3,4),dtype=np.int)
>>>a
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]])
>>>b = a.astype(np.float)#新生成一个数组改变原数组类型
>>>b
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
>>>ls = a.tolist()#将ndarray数组转换为列表