Coarse to Fine Multi-Resolution Temporal Convolutional Network

该研究提出了一种名为C2F-TCN的模型,通过时间编码器-解码器结构解决过度分割问题。其特点在于采用从粗到细的解码器集成,结合多分辨率特征增强策略,以提高视频动作分割的准确性。研究还引入了视频级的‘动作损失’,以减少过度分割,并利用概率集合对抗网络的过度自信问题。实验表明,C2F-TCN在多个数据集上取得了最佳效果。
摘要由CSDN通过智能技术生成

Abstract

目标:解决过度分割问题。

方法:时间编码器-解码器来解决序列碎片问题。

特点:解码器遵循具有多个时间分辨率的隐式集合,并且从粗到细。

其他贡献:

  1. 采用多分辨率增强策略以强化训练;
  2. 设计了支持架构的损失函数。

成果:在三个数据集上取得了最好的效果。

Introduction

标准模型:MS-TCN

两种改进思路:

  1. 额外的训练;
  2. 后处理平滑。

本文的思路:

编码器:将时间分辨率降低到某个瓶颈特征;
解码器:将序列恢复到原始时间分辨率之前。

核心思想:先收缩后拉伸。

这样的想法,来源于图像分割、流量估计和地标检测。

Encoder-Decoder的设计在过去性能不佳的原因在于:

瓶颈设计与解码器设计过于简单(子动作长度显著变化,解码器必须仔细设计以进行动作分割)。

为了处理不同子长度,提出了一种结构:解码器的输出层进行“从粗到精”的集成。

介绍两个新的特性:

Video-level loss

目前,tcn的训练以帧级丢失为代价的。

这并不能充分惩罚序列级未分类。

为了增加帧级的损失,引入了一种新的视频级“动作损失”来惩罚与复杂活动标签无关的子动作。

这种损失在减轻过度分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

右边是我女神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值