最短路–单源最短路–可能存在负环–Bellman-Ford算法
有边数限制的最短路
有负权回路的时候,最短路不一定存在
两重循环
松弛操作
(三角不等式)
// 有边数限制 k
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
const int N = 510,M = 10010;
int n,m,k;
int dist[N],backup[N];//距离,上次更新距离
struct Edge{//边
int a,b,c;
}edges[M];
int Bellman(){
//初始化
memset(dist,0x3f,sizeof dist);
dist[1]=0;
// 循环k次
for(int i=0;i<k;i++)
{
memcpy(backup,dist,sizeof dist);
for(int j=0;j<m;j++)//更新所有**边**
{
int a=edges[j].a,b=edges[j].b,c=edges[j].c;
dist[b]=min(dist[b],backup[a]+c);//用*上次结果*更新
}
}
if(dist[n]>0x3f3f3f3f/2)return -1;
return dist[n];
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
edges[i]={a,b,c};
}
int t=Bellman();
if(t==-1)puts("impossible");
else printf("%d\n",t);
return 0;
}
Bellman-Ford算法:
- 初始化
- 两重循环 – k次循环,循环更新所有边
- impossible条件 >0x3f3f3f3f