最短路--单源最短路--可能存在负环--Bellman-Ford算法

8 篇文章 0 订阅

最短路–单源最短路–可能存在负环–Bellman-Ford算法

有边数限制的最短路

有负权回路的时候,最短路不一定存在

两重循环
松弛操作
(三角不等式)
在这里插入图片描述

// 有边数限制 k
#include<iostream>
#include<cmath>
#include<cstring>

using namespace std;

const int N = 510,M = 10010;
int n,m,k;
int dist[N],backup[N];//距离,上次更新距离

struct Edge{//边
    int a,b,c;
}edges[M];

int Bellman(){
    //初始化
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;

    // 循环k次
    for(int i=0;i<k;i++)
    {
       memcpy(backup,dist,sizeof dist);
       for(int j=0;j<m;j++)//更新所有**边**
       {
           int a=edges[j].a,b=edges[j].b,c=edges[j].c;
           dist[b]=min(dist[b],backup[a]+c);//用*上次结果*更新
       } 
    }
    if(dist[n]>0x3f3f3f3f/2)return -1;
    return dist[n];
}

int main()
{
    cin>>n>>m>>k;
    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        edges[i]={a,b,c};
    }
    int t=Bellman();
    if(t==-1)puts("impossible");
    else printf("%d\n",t);

    return 0;
}

Bellman-Ford算法:

  1. 初始化
  2. 两重循环 – k次循环,循环更新所有边
  3. impossible条件 >0x3f3f3f3f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值