NLP系列-牛刀小试Attention

目录

前言

一、Attention是什么?

二、使用步骤

1.Decode端特征与Encode端特征进行点乘

2.Softmax函数,计算得分

3.求和计算,输出结果

总结



前言

目前,注意力机制(Attention)可以说已经成为了nlp任务中必不可缺的要素之一。其基本思想是通过对输入数据中不同部分的重要性进行加权,使模型能够关注到与当前任务相关的信息。在序列建模和自然语言处理任务中,注意力机制已经成为了一种基本的技术手段。


一、Attention是什么?

Attention是一个向量,通过attention可以计算decode端隐含层的特征与encode端隐含层特征的注意力权重大小,通常以softmax函数进行输出一组向量。举个例子,在机器翻译中,注意力机制的作用是能够计算出 编码端 h1,h2,h3,h4 之间的关联程度,然后传入到解码中 ,防止seq-to-seq 结构因句子过长导致内容遗忘,造成内部混乱的后果。

二、使用步骤

1.Decode端特征与Encode端特征进行点乘

举例:假设解码端的向量为dec_hidden_state,编码端的向量为enc_hidden。下面是一个点乘的代码,可以计算出它们之间的权重大小。

dec_hidden_state = [5,1,20]

enc_hidden = np.transpose([[3,12,45], [59,2,5], [1,43,5], [4,3,45.3]])#隐含层输出的特征向量

def dot_attention_score(dec_hidden_state, enc_hidden):
    # TODO: return the product of dec_hidden_state transpose and enc_hidden_states
    return np.matmul(np.transpose(dec_hidden_state), enc_hidden)
    
attention_weights_raw = dot_attention_score(dec_hidden_state, enc_hidden)
attention_weights_raw#返回权重

 

2.Softmax函数,计算得分

代码如下(示例):

def softmax(x):
    x = np.array(x, dtype=np.float128)
    e_x = np.exp(x)
    return e_x / e_x.sum(axis=0) 

attention_weights = softmax(attention_weights_raw)
attention_weights

def apply_attention_scores(attention_weights, annotations):
    # TODO: Multiple the annotations by their weights
    return attention_weights * annotations

applied_attention = apply_attention_scores(attention_weights, annotations)
applied_attention#得出它们之间的得分(解码端分别与编码端隐含层之间的得分大小)

 

 

 

3.求和计算,输出结果

求出了与输出特征所有相关的得分之后,最后一步就是进行求和计算了。也就是我们所说的加权求和计算。

def calculate_attention_vector(applied_attention):
    return np.sum(applied_attention, axis=1)

attention_vector = calculate_attention_vector(applied_attention)
attention_vector

 

总结

在机器翻译、语音识别和文本分类等任务中,注意力机制已经被广泛应用,取得了很好的效果。另外,注意力机制可以使模型在不增加参数量的情况下提高性能。例如,在图像描述任务中,可以使用注意力机制来选择与当前要描述的部分相关的图像区域,从而提高描述的准确性。最后,注意力机制可以提高模型的可解释性。通过观察注意力分布,可以了解模型对不同部分的关注程度,从而更好地理解模型的行为。

总之,注意力机制是一种非常有用的技术,在深度学习中已经得到广泛的应用。通过注意力机制,模型可以自动地选择与当前任务相关的信息,从而更好地理解输入数据,并提高模型性能和可解释性

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 自然语言处理(Natural Language Processing,简称NLP)是计算机科学与人工智能领域的一个重要研究方向,目的是让计算机能够理解、处理和生成人类的自然语言。NLP-100例是一份经典的NLP问题集合,包含了各种与自然语言处理相关的问题和挑战。 这份NLP-100例涵盖了从基础的文本处理到更高级的自然语言理解和生成的问题。例如,其中包括了文本预处理、词频统计、语法分析、词性标注、实体识别、情感分析、机器翻译等任务。 NLP-100例的目的是帮助研究者和开发者更好地理解NLP领域的核心问题和技术,同时提供一些典型的案例和数据集供实践和研究使用。通过完成这些例题,可以锻炼自己在NLP领域的能力和技术,提高对自然语言的处理和理解能力。 此外,NLP-100例也为研究者提供了一个可以与其他人交流和探讨的平台。研究者可以使用相同的数据集和问题进行实验和评估,从而更好地了解NLP技术的优劣和进展。 总之,NLP-100例是一个对NLP进行实践和研究的重要资源。通过解决这些例题,可以深入理解自然语言处理的基础和技术,掌握各种NLP任务的方法和技巧。同时,它也是一个促进交流和合作的平台,为NLP研究者提供了一个共同的基础和语言。 ### 回答2: 自然语言处理(Natural Language Processing,简称NLP)是研究计算机与人类自然语言之间的交互的一门学科。NLP-100例指的是日本的一个NLP入门教程,包含了100个常见的NLP问题和对应的解答。 NLP-100例涵盖了从文本处理到语义理解等多个方面的问题。其中,一些例子包括:文本的分词、词性标注、句法分析、语义角色标注和文本分类等。 以分词为例,分词是将一段连续的文本分割成词语的过程。在NLP-100例中,可以通过使用Python中的分词工具NLTK(Natural Language Toolkit)来实现分词功能。 另外,对于文本的词性标注,NLP-100例提供了使用POS(Part-Of-Speech)标记对文本中的每个词进行词性标注的方法。可以使用NLTK提供的POS标注工具来实现。 此外,NLP-100例还包括了语义角色标注的问题,语义角色标注是为了确定句子中的谓语动词所承担的语义角色,如施事者、受事者、时间等。可以使用Stanford CoreNLP工具包来实现语义角色标注。 最后,NLP-100例还介绍了文本分类的问题,文本分类是将文本划分到预定义的类别中。可以使用机器学习算法,如朴素贝叶斯或支持向量机(SVM)等来进行文本分类。 通过学习NLP-100例,我们可以了解到自然语言处理的基本方法和技术,并且可以利用这些技术来解决相关的自然语言处理问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值