在Python中通过OpenCV自己训练分类器进行特定物体实时识别
0、 前言
OpenCV中提供了一些训练好的分类器供我们调用,从而实现物体识别和分类,如人脸检测、年龄和性别预测、猫脸检测、(汽车、船、猫、狗、沙发等)物体识别等。本篇文章的目的主要是介绍如何利用OpenCV自己训练分类器,实现特定物体的识别,这里以人手识别为例,对整个训练及识别测试过程进行说明,并附有程序代码。
1、 运行环境
操作系统:win10-64bit;
集成开发环境(IDE):Visual Studio Code;
Python版本:python 3.7(在Visual Studio Code中安装的扩展模块)
OpenCV版本:opencv snippets 1.2.2(在Visual Studio Code中安装的扩展模块)
2、 训练分类器
(1) 正样本制作
①自己拍一些人手的照片,或者直接从网上找一些人手的图片,保存到一个文件夹中(我这里为了方便,直接把图片按数字顺序命名了)。
②将上述图片保存成灰度图,并将尺寸…
详细内容见:在Python中通过OpenCV自己训练分类器 进行特定物体实时识别详细讲解
https://download.csdn.net/download/weixin_46405486/18581036
结果:分类器训练完成之后,通过该分类器进行目标物体识别,效果如下图。效果可能还有待提高,扔存在误检、漏检的情况,但基本能检测出目标区域,通过调整检测参数和优化训练数据,可能会进一步提高检测精度,大家可以自行多尝试一下,本文主要主要对分类器的训练和测试过程进行了介绍,希望对大家有点用处,文中错误的地方也请大家批评指正,大家共同进步!
详细内容请参考在Python中通过OpenCV自己训练分类器 进行特定物体实时识别详细讲解
https://download.csdn.net/download/weixin_46405486/18581036
或参考https://www.syjshare.com/res/EPML3G28