图像处理理论和应用---图像预处理技术

本文详细介绍了图像预处理的各种技术,包括灰度变换、几何矫正、图像增强和滤波等。重点讨论了灰度反转、对比度增强、伽马矫正和直方图均衡化等方法,以及在深度学习中的应用,如数据增强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像预处理技术
图像处理的形式
• 按图像处理的输入和输出形式,图像处理的基本功能可分为以下几种形式:
• 单幅图像输入,进行处理,输出单幅图像。
• 多幅图像输入,进行处理,输出单幅图像。
• 单幅图像输入,进行处理,输出数字或符号等内容。
• 多幅图像输入,进行处理,输出数字或符号等内容。
• 对于人工智能方向的图像处理任务,最终的处理结果通常是代表具体内容的数字或者符号。所以上述前两种仍然输出图像的处理方法被统称为图像预处理。

图像预处理
• 图像预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性、最大限度地简化数据,从而改进特征提取、图像分割、匹配和识别的可靠性。
• 图像预处理的流程主要包括:灰度变换,几何矫正,图像增强,图像滤波等操作。
在这里插入图片描述

灰度变换
在这里插入图片描述

在这里插入图片描述

• 下面介绍几种典型的灰度变换映射函数。

反转
• 图像反转是将原图灰度值反转的操作,简单说就是将黑色变为白色,白色变为黑色。映射函数的图示如下:

在这里插入图片描述

对比度增强
在这里插入图片描述
在这里插入图片描述

对比度压缩
在这里插入图片描述
在这里插入图片描述

伽马矫正
• 伽马矫正是一种借助了指数变换映射的增强技术。
在这里插入图片描述

• 如下图所示:
在这里插入图片描述

• 高灰度范围被拉伸,实现了强化亮部,
• 压缩暗部的图像增强效果;
在这里插入图片描述

• 低灰度范围被拉伸,实现了强化暗部,
• 压缩亮部的图像增强效果;
在这里插入图片描述

• 大部分图像捕捉设备在保存图片时会自动加上伽马校正,也就是说图片中存储的是非线性空间中的颜色(gamma值为2.2时的称之为sRGB空间)。
• 图像捕捉设备的输入能量和图片的颜色亮度之间的关系是线性的,而显示器的输入能量和图片的颜色亮度之间的关系是非线性。因此我们需要对图像进行非线性矫正(伽马矫正)后,再将图像输出到显示屏。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值