2021年高考全国理科数学I卷数学压轴题的证明

证明:

因为 lim ⁡ x → 0 f ( x ) = 0 \lim\limits_{x \to 0} f(x)=0 x0limf(x)=0,是一个可去间断点,我们补充 f ( 0 ) = 0 f(0)=0 f(0)=0,使它在 [ 0 , e ] [0,e] [0,e]上连续。由第一问可知, f ( x ) f(x) f(x) ( 0 , 1 ) (0,1) (0,1)上递增, ( 1 , e ) (1,e) (1,e)上递减。原题等同于 f ( x ) = x ( 1 − ln ⁡ x ) f(x)=x(1-\ln x) f(x)=x(1lnx),如果 x 1 ( 1 − ln ⁡ x 1 ) = x 2 ( 1 − ln ⁡ x 2 ) x_1(1-\ln x_1)=x_2(1-\ln x_2) x1(1lnx1)=x2(1lnx2),即 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),求证 2 < x 1 + x 2 < e 2<x_1+x_2<e 2<x1+x2<e。由于对称性,我们不防设 x 1 < x 2 x_1<x_2 x1<x2

首先证明 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

g ( x ) = f ( x ) − f ( 2 − x ) g(x)=f(x)-f(2-x) g(x)=f(x)f(2x),那么 g ′ ( x ) = − ln ⁡ [ x ( 2 − x ) ] g^\prime (x)=-\ln [x(2-x)] g(x)=ln[x(2x)],对于 h ( x ) = x ( 2 − x ) h(x)=x(2-x) h(x)=x(2x),在 ( 0 , 1 ) (0,1) (0,1)上递增, g ′ ( x ) g^\prime(x) g(x)在此区间上递减。且 h ( 1 ) = 1 h(1)=1 h(1)=1,因此 g ′ ( x ) > g ′ ( 1 ) = 0 g^\prime(x) >g^\prime(1)=0 g(x)>g(1)=0,即 g ( x ) g(x) g(x) ( 0 , 1 ) (0,1) (0,1)上递增。而 g ( 1 ) = f ( 1 ) − f ( 1 ) = 0 g(1)=f(1)-f(1)=0 g(1)=f(1)f(1)=0,于是我们得到 g ( x ) < 0 g(x)<0 g(x)<0,过程如下表所示。即可以写成 f ( x 2 ) = f ( x 1 ) < f ( 2 − x 1 ) f(x_2)=f(x_1)<f(2-x_1) f(x2)=f(x1)<f(2x1)。由于 x 2 ∈ [ 1 , e ] 以及 2 − x ∈ [ 1 , e ] x_2\in [1,e]\text{以及} 2-x\in [1,e] x2[1,e]以及2x[1,e],且 f ( x ) f(x) f(x) [ 1 , e ] [1,e] [1,e]上递减。于是有 x 2 > 2 − x 1 x_2>2-x_1 x2>2x1,即证得 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

x 0 → 1 0 \to 1 01
h ( x ) h(x) h(x) 0 ↗ 1 0\nearrow 1 01
g ′ ( x ) g^\prime(x) g(x) + ∞ ↘ 0 +\infty \searrow 0 +0 g ′ ( x ) > 0 g^\prime (x)>0 g(x)>0
g ( x ) g(x) g(x) ∗ ↗ 0 *\nearrow 0 0 g ( x ) g(x) g(x)递增, g ( x ) < 0 g(x)<0 g(x)<0

下面来证明 x 1 + x 2 < e x_1+x_2<e x1+x2<e

g ( x ) = f ( x ) − f ( e − x ) g(x)=f(x)-f(e-x) g(x)=f(x)f(ex)那么 g ′ ( x ) = − ln ⁡ [ x ( e − x ) ] g^\prime (x)=-\ln [x(e-x)] g(x)=ln[x(ex)] h ( x ) = x ( e − x ) h(x)=x(e-x) h(x)=x(ex)同理可以分析出在 ( 0 , 1 ) (0,1) (0,1)上递减,且 lim ⁡ x → 0 g ′ ( x ) = + ∞ \lim\limits_{x \to 0}g^\prime(x)=+\infty x0limg(x)=+,而 g ′ ( 1 ) = − ln ⁡ ( e − 1 ) ≈ − 0.54 g^\prime (1)=-\ln (e-1)\approx -0.54 g(1)=ln(e1)0.54,因此,即 g ( x ) g(x) g(x) ( 0 , 1 ) (0,1) (0,1)上先增后减。 g ( x ) > min ⁡ { g ( 0 ) = 0 , g ( 1 ) ≈ 0.21 } = 0 g(x)>\min \{g(0)=0,g(1)\approx 0.21\}=0 g(x)>min{g(0)=0,g(1)0.21}=0。于是我们得到 g ( x ) > 0 g(x)>0 g(x)>0,过程如下表所示。即可以写成 f ( x 2 ) = f ( x 1 ) > f ( e − x 1 ) f(x_2)=f(x_1)>f(e-x_1) f(x2)=f(x1)>f(ex1)。由于 x 2 ∈ [ 1 , e ] 以及 e − x 2 ∈ [ 1 , e ] x_2\in [1,e]\text{以及} e-x_2\in [1,e] x2[1,e]以及ex2[1,e],且 f ( x ) f(x) f(x) [ 1 , e ] [1,e] [1,e]上递减。于是有 x 2 < e − x 1 x_2<e-x_1 x2<ex1,即证得 x 1 + x 2 < e x_1+x_2<e x1+x2<e

得证。

x 0 → 1 0 \to 1 01
h ( x ) h(x) h(x) 0 ↗ e − 1 0\nearrow e-1 0e1
g ′ ( x ) g^\prime(x) g(x) + ∞ ↘ 0 ↘ − 0.54 +\infty \searrow 0\searrow -0.54 +00.54 g ′ ( x ) > 0 g^\prime (x)>0 g(x)>0,后 g ′ ( x ) < 0 g^\prime (x)<0 g(x)<0
g ( x ) g(x) g(x) g ( 0 ) = 0 ↗ g ( ∗ ) ↘ 0.21 g(0)=0 \nearrow g(*)\searrow 0.21 g(0)=0g()0.21 g ( x ) g(x) g(x)先递增,后递减, g ( x ) > 0 g(x)>0 g(x)>0

2022年上海卷压轴题:
根据前面的分析,我们猜测 a 2 m + 1 = 5 × 3 m − 1 a_{2m+1}=5\times3^{m-1} a2m+1=5×3m1。对于 a 2 m + 2 = 2 × a 2 m + 1 − a i = 2 × 5 × 3 m − 1 − a i = 3 m + 1 a_{2m+2}=2\times a_{2m+1}-a_{i}=2\times5\times 3^{m-1}-a_i=3^{m+1} a2m+2=2×a2m+1ai=2×5×3m1ai=3m+1,我们可取 a i = a 2 m − 2 = 3 m − 1 a_i=a_{2m-2}=3^{m-1} ai=a2m2=3m1,当然,如果 m m m取1,而 a i = a 1 a_i=a_1 ai=a1也是可行的。
对于 a 2 m + 3 = 2 × 3 m + 1 − a i = 5 × 3 m a_{2m+3}=2\times 3^{m+1}-a_i=5\times 3^{m} a2m+3=2×3m+1ai=5×3m,可取 a i = a 2 m = 3 m a_i=a_{2m}=3^m ai=a2m=3m,当然,如果 m m m取0,而 a i = a 1 a_i=a_1 ai=a1也是可行的。即对于 a 3 = 2 a 2 − a 1 = 5 a_3=2a_2-a_1=5 a3=2a2a1=5也是满足题意的。完全可以满足题意。下面我们来使用数学归纳法来证明这样的取法是唯一的。
很显然对于 k = 1 k=1 k=1时是成立的,即 a 3 = 5 a_3=5 a3=5,验证即可。我们假设猜测 a 2 k + 1 = 5 × 3 k − 1 , k = 1 , 2 , 3... a_{2k+1}=5\times3^{k-1}, k=1,2,3... a2k+1=5×3k1,k=1,2,3...
对于 a 2 k + 3 = 2 × 3 k + 1 − a i a_{2k+3}=2\times 3^{k+1}-a_i a2k+3=2×3k+1ai,而 a 2 k + 4 = 2 × a 2 k + 3 − a j = 4 × 3 k + 1 − 2 a i − a j = 3 k + 2 a_{2k+4}=2\times a_{2k+3}-a_j=4\times3^{k+1}-2a_i-a_j=3^{k+2} a2k+4=2×a2k+3aj=4×3k+12aiaj=3k+2,因此有 3 k + 1 = 2 a i + a j 3^{k+1}=2a_i+a_j 3k+1=2ai+aj
首先证明一下 a i a_i ai a j a_j aj都只能是 3 q 3^q 3q的指数形式,即偶数项或第1项。
1、假设 a i a_i ai a j a_j aj都是取 5 × 3 n 5\times 3^n 5×3n的形式,那么右边可以被3整除,而左边无法被3整除,因此,假设错误。
2、假设 a i = 3 p , a j = 5 × 3 q a_i=3^p,a_j=5\times 3^q ai=3p,aj=5×3q,代入上式,可知 3 k + 1 = 2 × 3 p + 5 × 3 q 3^{k+1}=2\times 3^p+5\times 3^q 3k+1=2×3p+5×3q,可以稍加分析下,如果p小于q,则两边提取 3 p 3^p 3p,可知 3 k + 1 − p = 2 + 5 × 3 q − p 3^{k+1-p}=2+5\times3^{q-p} 3k+1p=2+5×3qp,右边不可能被3整除。同理如果 p ≥ q p\geq q pq,也不可能。假设错误。
3、同2,可证 a i = 5 × 3 p , a j = 3 q a_i=5\times 3^p,a_j=3^q ai=5×3paj=3q假设错误。
因此,只可能 a i a_i ai a j a_j aj都只能是3的指数形式,即偶数项或第1项。
可设 a i = 3 p , a j = 3 q a_i=3^p,a_j=3^q ai=3p,aj=3q,于是有 3 k + 1 = 2 × 3 p + 3 q 3^{k+1}=2\times 3^p+3^q 3k+1=2×3p+3q,如果 p < q p<q p<q,则 3 k + 1 − p = 2 + 3 q − p 3^{k+1-p}=2+3^{q-p} 3k+1p=2+3qp,根据两边被3整除的情况,只有 q − p = 0 且 k + 1 − p = 1 q-p=0且k+1-p=1 qp=0k+1p=1,和 p < q p<q p<q矛盾。
如果 p ≥ q p\geq q pq,同理分析知 p = q 且 k + 1 − q = 1 , 即 有 p = q = k p=q且k+1-q=1,即有 p=q=k p=qk+1q=1p=q=k
由上面的分析可知只有取 a i = a j = 3 k a_i=a_j=3^k ai=aj=3k,因此 a 2 k + 3 = 2 × 3 k + 1 − 3 k = 5 × 3 k a_{2k+3}=2\times 3^{k+1}-3^k=5\times 3^k a2k+3=2×3k+13k=5×3k,是满足表达式的。
综上,我们有:
a m = { 1 m = 1 3 k m = 2 k 5 × 3 k − 1 m = 2 k + 1 其 中 k = 1 , 2 , 3... a_m=\begin{cases} 1&m=1\\3^{k}&m=2k\\5\times 3^{k-1}&m=2k+1 \end{cases} 其中k=1,2,3... am=13k5×3k1m=1m=2km=2k+1k=1,2,3...

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值