python数据文件处理库-pandas

pandas 是一个 Python提供的快速、灵活的数据结构处理包,让“关系型”或“标记型”数据的交互既简单又直观。

官网地址: https://pandas.pydata.org/

一、pandas介绍

pandas 有两个主要数据结构Series(一维)和 DataFrame(二维), 可以处理多种类型的数据.
主要功能:

  1. 处理缺失数据(以 NaN 表示),无论是浮点数还是非浮点数数据 大小可变性:可以向 DataFrame 和更高维度的对象插入和删除列
  2. 自动和显式数据对齐:对象可以显式地对齐到一组标签,或者用户可以简单地忽略标签,让 Series、DataFrame
  3. 等自动在计算中对齐数据 按组操作功能: 用于对数据集执行分割-应用-合并操作,既可用于聚合数据,也可用于转换数据 多源数据转换: 将其他
  4. Python 和 NumPy 数据结构中的不规则、不同索引的数据转换为 DataFrame 对象
  5. 智能的基于标签的切片、花式索引和大数据集的子集划分 直观的数据集合并和连接 灵活的数据集重塑和旋转
  6. 轴的分层标记(每个刻度可以有多个标签) 强大的 IO 工具,用于从(CSV 和分隔符)加载数据,从 Excel
  7. 文件、数据库加载数据,以及保存/加载超快速 HDF5 格式的数据 时间序列的功能:日期范围生成和频率转换,移动窗口统计,日期偏移和滞后。

Pandas结构:
在这里插入图片描述

import pandas as pd

df = pd.DataFrame(
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
        ],
        "Age": [22, 35, 58],
        "Sex": ["male", "male", "female"],
    }
)

print(df)

#                        Name  Age     Sex
# 0   Braund, Mr. Owen Harris   22    male
# 1  Allen, Mr. William Henry   35    male
# 2  Bonnell, Miss. Elizabeth   58  female

其中DataFrame的每一列都是Series对象
在这里插入图片描述
在这里插入图片描述

print(type(df['Name']))
# <class 'pandas.core.series.Series'>

二、数据加载和写出

pandas支持多种形式的数据格式, 不仅可以在代码中显示的加载列表、数组等, 还可以引入外部文件, 支持的外部文件格式也较多

在这里插入图片描述

加载时调用对应的方法==read_xxx()==
在这里插入图片描述

# 数据加载
df = pd.read_excel('./static/pd_file.xlsx')

写出时调用对应的方法to_xxx()
在这里插入图片描述

df = pd.to_excel('./static/pd_file_new.xlsx')

三、数据清洗

  • dropna(axis=0, how=‘any’): 删除含有缺失值的行或列。
data = {'A': [1, 2, np.nan], 'B': [5, np.nan, np.nan], 'C': [1, 2, 3]}
df = pd.DataFrame(data)

# 删除含有缺失值的行
df_cleaned = df.dropna(axis=0, how='any')
print(df_cleaned)
  • fillna(value=None, method=‘ffill’, …): 用指定值或方法填充缺失值。
# 使用前一个有效值填充缺失值
df_filled = df.fillna(method='ffill')
print(df_filled)
drop(labels, axis=0): 删除指定行或列。
# 删除第一行
df_dropped_row = df.drop(0, axis=0)
print(df_dropped_row)

# 删除某列,例如 'B' 列
df_dropped_col = df.drop('B', axis=1)
print(df_dropped_col)
  • replace(to_replace=value, value=None): 替换指定值。
# 将缺失值替换为0
df_replaced = df.replace(np.nan, 0)
print(df_replaced)
  • rename(columns={old_name: new_name}, index={…}): 重命名列名或索引。
df_renamed = df.rename(columns={'A': 'NewA', 'B': 'NewB', 'C': 'NewC'})
print(df_renamed)

四、数据转换

  • 生成列
# 对a列按照'|'分割, 取1、9、10列作为新列
df[['city','poi_1', 'poi_2']] = df['a'].str.split('|', expand=True)[[0,8,9]]
  • 删除列
# 删除a列
df = df.drop(columns=['a'])
  • 转换列格式
# 修改dt类型为datetime格式
df['dt'] = pd.to_datetime(df['dt'])
# 处理日期为day、month、year
df['dt_day'] = df['dt'].dt.strftime('%Y-%m-%d')
df['dt_month'] = df['dt'].dt.strftime('%Y-%m')
df['dt_year'] = df['dt'].dt.year
  • pivot(index, columns, values): 数据透视表操作。
# 示例数据
data = {
    'Category': ['Fruit', 'Fruit', 'Vegetable', 'Fruit', 'Vegetable'],
    'Product': ['Apple', 'Banana', 'Carrot', 'Orange', 'Potato'],
    'Sales': [100, 200, 150, 300, 250]
}

df = pd.DataFrame(data)

# 使用pivot创建数据透视表,以'Category'为行,'Product'为列,'Sales'为值
pivot_table = df.pivot(index='Category', columns='Product', values='Sales')
print(pivot_table)
  • pivot_table(index, values, aggfunc=np.mean, …): 创建带有聚合函数的数据透视表。
data = {
    'City': ['New York', 'New York', 'San Francisco', 'San Francisco', 'Chicago', 'Chicago'],
    'Month': ['Jan', 'Feb', 'Jan', 'Feb', 'Jan', 'Feb'],
    'Temperature': [5, 8, 12, 14, 3, 6]
}

df = pd.DataFrame(data)

# 使用pivot_table计算每个月各城市的平均温度
pivot_table = df.pivot_table(index='Month', columns='City', values='Temperature', aggfunc=np.mean)
print(pivot_table)
  • apply(func, axis=0): 应用函数到DataFrame的行或列上。
# 示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 定义一个计算平方的函数
def square(x):
    return x**2

# 对DataFrame的每一列应用square函数
squared_df = df.apply(square, axis=0)
print(squared_df)
  • groupby(by=None): 根据某一列或多列进行分组。
data = {
    'Category': ['Fruit', 'Fruit', 'Vegetable', 'Fruit', 'Vegetable'],
    'Sales': [100, 200, 150, 300, 250]
}

df = pd.DataFrame(data)

# 按'Category'列进行分组,并计算'Sales'的总和
grouped_sales = df.groupby('Category')['Sales'].sum()
print(grouped_sales)

五、数据查询和筛选

  • loc()方法
    DataFrame和Series对象的一种索引器,允许基于行和列的标签来选择数据。
    语法: df.loc[row_selection, column_selection],其中row_selection和column_selection可以是单个标签、列表、切片或布尔数组,
    • 特性:
      • 支持“前闭后闭”的区间选择,意味着如果用切片指定范围,两端 的标签都会被包含在内。
      • 可以用来选取单行、单列、多行、多列或行与列的组合。
      • 不仅可以用于选择数据,还可以用于修改现有数据或插入新数据。
import pandas as pd

data = {
    'Country': ['China', 'United States', 'India'],
    'Population': [1404200000, 332639102, 1393409038],
    'Area (sq km)': [9600000, 9372610, 3287263]
}
df = pd.DataFrame(data)
df.set_index('Country', inplace=True)

选取单列

population = df.loc[:, 'Population']

选取多列

subset = df.loc[:, ['Population', 'Area (sq km)']]

选取特定行

china_data = df.loc['China']

选取行范围

us_to_india = df.loc['United States':'India']

布尔索引

large_countries = df.loc[df['Population'] > 1000000000]

修改数据

df.loc['China', 'Population'] = 1444200000  # 更新中国人口数据

插入新数据

df.loc['Brazil'] = ['Brazil', 213993437, 8511965]  # 新增巴西数据
  • iloc()方法
    DataFrame和Series对象的另一个重要索引器,它提供了基于整数位置的数据选择和修改功能。与loc基于标签索引不同,iloc完全依赖于数据在结构中的物理位置
    语法:df.iloc[row_selection, column_selection],其中row_selection和column_selection可以是整数、整数列表、切片或布尔数组,来指定数据的位置
    • 特性:
      • 支持整数索引的“左闭右开”区间选择,意味着切片操作的结束位置是不包含在内的。
      • 适合于快速按位置访问或修改数据,尤其是在处理没有明确标签或者标签不如位置重要时。
      • 不能直接使用列名或行标签进行索引,只能使用整数位置。

选取单个元素

element = df.iloc[1, 2]  # 选取第二行第三列的元素

选取整行或整列

second_row = df.iloc[1, :]  # 选取第二行
third_column = df.iloc[:, 2]  # 选取第三列

选取多行多列

subset = df.iloc[0:2, 1:3]  # 选取前两行的第二列至第三列

切片选择

last_two_rows = df.iloc[-2:]  # 选取最后两行的所有列

布尔索引(结合.iloc需先转换为位置)

bool_index = df['A'] > 1
position_based_bool_index = df.index[bool_index]
rows_with_A_gt_1 = df.iloc[position_based_bool_index]
  • loc()和iloc()的区别

    • loc是通过标签来访问数据,而iloc是通过整数位置来访问数据
    • 在使用loc时,选择的行和列都是闭区间,即包括开始和结束位置;而在使用iloc时,选择的行和列都是左闭右开区间,即包括开始位置但不包括结束位置。
    • loc可以使用布尔数组进行筛选,而iloc不支持。
    • loc可以使用标签名和标签列表作为索引,而iloc只能使用整数作为索引。
    • loc和iloc都支持使用冒号(:)来选择所有行或列,但是在使用loc时,冒号前后必须加上标签名或标签列表;而在使用iloc时,冒号前后可以省略,表示选择所有行或列。
  • 使用案例

# 数据查询
# 查询某列
city = df['city']

# 按索引
# 查询第二列的所有行, 其中第一个为行, 第二个为列
name = df.iloc[:,1]

# 获取某些列
c1 = df[['city','poi_1']]
c2 = df.iloc[:,1:3]

查询切片

# 按索引
# 查询第二列的所有行, 其中第一个为行, 第二个为列
name = df.iloc[:,1]

查询指定列
数据查询

# 数据查询
city = df['city']
# 按索引
name = df.iloc[:,1]
# 获取某些列
c1 = df[['city','poi_1']]
c2 = df.iloc[:,1:3]
print(name.head(5))
print(c2.head(5))
数据筛选
# 索引筛选
# 筛选前二十行数据
print(df.iloc[0:21, :])
# 或者
print(df.head(20))

# 按条件筛选
# 获取广州的记录
df.set_index('city', inplace=True)
print(df.loc['广州'])

# 获取第二列='广州市正骨医院'的记录
print(df.loc[df['poi_1'] == '广州市正骨医院', :])

六、数据统计

  • sum(), mean(), median(), min(), max(): 计算总和、均值、中位数、最小值、最大值。
# 示例数据
data = {'A': [1, 2, 3, 4, 5],
        'B': [5, 15, 10, 20, np.nan],
        'C': [7, 8, 9, 10, 11]}

df = pd.DataFrame(data)

# 计算'B'列的总和、均值、中位数、最小值、最大值
total_B = df['B'].sum()
mean_B = df['B'].mean()
median_B = df['B'].median()
min_B = df['B'].min()
max_B = df['B'].max()

print(f"Sum of B: {total_B}")
print(f"Mean of B: {mean_B}")
print(f"Median of B: {median_B}")
print(f"Min of B: {min_B}")
print(f"Max of B: {max_B}")
  • count(): 非NA值的数量。
# 计算每列的非空值数量
non_na_counts = df.count()
print(non_na_counts)
  • corr(): 计算相关系数矩阵。
# 计算相关系数矩阵
correlation_matrix = df.corr()
print(correlation_matrix)
  • cov(): 计算协方差矩阵。
# 计算协方差矩阵
covariance_matrix = df.cov()
print(covariance_matrix)
  • sort_values(by, ascending=True): 根据一列或多列的值排序。
# 按'A'列升序排序
sorted_df = df.sort_values(by='A', ascending=True)
print(sorted_df)
  • rank(method=‘average’): 计算每行或每列的排名。
# 计算'B'列的排名
ranked_df = df['B'].rank(method='average')
print(ranked_df)

七、数据可视化

使用Matplotlib的基本绘图
首先确保已经安装了matplotlib库,如果没有安装可以通过pip安装:pip install matplotlib。

import pandas as pd
import matplotlib.pyplot as plt

# 示例数据
data = {'Year': [2000, 2001, 2002, 2003, 2004],
        'Sales': [10, 15, 20, 25, 30]}
df = pd.DataFrame(data)

# 绘制折线图
plt.figure(figsize=(10, 5))
df.plot(kind='line', x='Year', y='Sales', color='blue')
plt.title('Sales Over Years')
plt.xlabel('Year')
plt.ylabel('Sales')
plt.show()

在这里插入图片描述
总之, pandas的功能十分丰富且强大, 这里只是列举了冰山一角, 更多内容可以查看官网.

  • 36
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python是一种功能强大的编程语言,可以用于各种数据分析任务。而在Python数据分析工具中,pandas是最受欢迎和广泛使用的工具之一。 Pandas提供了用于处理和分析数据的高级数据结构和函数。其最常用的数据结构是DataFrame,类似于Excel中的表格。通过Pandas,我们可以读取Excel文件,并将其转换为DataFrame对象进行进一步处理。 使用Pandas进行Excel数据分析的第一步是读取Excel文件。Pandas提供了read_excel函数,可以方便地读取Excel文件并转换为DataFrame对象。我们可以指定要读取的工作表、要保留的列、要跳过的行等。 一旦我们将Excel文件读取为DataFrame对象,我们可以使用Pandas提供的丰富函数和操作对数据进行各种处理和分析。例如,我们可以使用head()函数查看前几行数据,使用describe()函数获取数据的统计摘要,使用mean()函数计算平均值,使用groupby()函数对数据进行分组等等。 除了数据处理和分析,Pandas还提供了各种工具来处理缺失值和数据清洗。我们可以使用dropna()函数删除含有缺失值的行或列,使用fillna()函数将缺失值填充为指定的值,使用replace()函数替换数据中的特定值等。 在数据分析完成后,我们可以使用to_excel函数将DataFrame对象保存为Excel文件。在保存时,我们可以指定要保存的工作表、保存的位置和文件名等。 总之,Pandas是一个非常强大和灵活的,可以使Python处理Excel数据时变得更加简单和高效。无论是数据的读取、处理、分析还是保存,Pandas都提供了丰富而简洁的函数和操作,使得数据分析变得更加容易。 ### 回答2: Pandas是一个功能强大的数据分析工具,可以轻松地处理和分析各种数据。同时,Pandas还提供了许多用于读取、处理和写入Excel文件的功能,让我们能够更方便地从Excel文件中提取和处理数据。 在使用Pandas进行Excel数据分析时,我们首先需要使用`pandas.read_excel()`函数读取Excel文件,并将其存储为一个Pandas的DataFrame对象。这样可以轻松地使用Pandas的各种数据处理和分析功能。 Pandas提供了一系列的函数来处理Excel数据,比如对数据进行过滤、排序、计算统计量等。我们可以使用`head()`函数快速查看数据的前几行,使用`describe()`函数生成数据的统计概要信息,使用`sort_values()`函数对数据进行排序等。 除此之外,Pandas还提供了一些方便的函数来进行Excel数据的写入。我们可以使用`to_excel()`函数将DataFrame对象写入Excel文件,并通过参数来设置写入的Sheet名称、行列标签等。 除了基本的读写操作,Pandas还提供了丰富的数据转换和清洗功能,如数据合并、去重、填充空值等等。这些功能可以帮助我们更好地理解和分析Excel中的数据。 总而言之,Pandas是一个非常方便和强大的数据分析工具,可以让我们轻松地处理和分析Excel数据。通过Pandas,我们可以更加快速和高效地提取、清洗和分析数据,将Excel文件作为数据分析的重要来源之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牧码文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值