混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了现代回归分析主流发展方向。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为可信
R语言回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);R语言贝叶斯(brms)回归与混合效应模型,包括回归和混合效应模型贝叶斯实现和嵌套型随机效应混合效应分析及贝叶斯实现;相关数据回归与混合效应模型及贝叶斯实现,包括时间自相关数据,空间自相数据及系统发育数据分析;非线性数据分析包括广义可加(混合)模型和非线性(混合)模型及贝叶斯实现等
我们在10个site 进行取样,每个site里面有8个样方,每个样方数据的土壤因素都测定了,但每个site只有1组气候数据,现在想构建一个:环境因素(气候+土壤)-功能多样性-生产力的模型,不知道这是否属于嵌套结构(1|site),还是要把样方数据作为重复,求平均值,用线性模型?