考场座位分配优化问题---贪心算法

题目描述

问题名称:考场座位分配优化问题

背景
在一个学校中,有10个班级,每个班级的学生人数不同,需要将这些学生分配到12个考场中,每个考场有42个座位,排列成6列7行。分配时需要满足以下条件:

  1. 每个考场必须恰好有42个座位被占用。
  2. 同一班级的学生不能坐在同一个考场的同一行或同一列。

输入

  • 班级人数数组:[50, 50, 50, 50, 51, 51, 51, 51, 50, 50]
  • 考场数量:12
  • 每个考场的座位数:42
  • 座位排列:6列7行

输出

  • 一个二维数组,表示每个考场的座位分配情况,其中每个元素是一个包含班级编号和学生编号的元组。
  • 每个考场每个班级的学生总数,以验证分配是否均匀。

算法要求
设计一个算法来解决上述问题,并使用Python实现。如果无法找到一个满足所有约束条件的解决方案,需要说明理由。

解决思路(参考)

  • 使用回溯算法尝试为每个学生分配考场和座位,同时检查是否违反了约束条件。
  • 使用贪心算法初步分配学生,以减少回溯算法的搜索空间。
  • 使用启发式方法(如最小剩余值优先)来指导搜索过程。

分析一下这个座位安排问题的约束条件和可行性。

首先列出问题的关键约束:

  1. 12个考场,每个考场42人(6列7行)
  2. 同一班级的学生不能坐在同一行或同一列
  3. 1-10班的人数分别是: 50, 50, 50, 50, 51, 51, 51, 51, 50, 50
  4. 总学生数: 504人
  5. 总座位数: 12 * 42 = 504个,刚好等于学生总数

分析可行性:

  1. 座位总数刚好等于学生总数,说明空间上是满足的
  2. 每个考场6列7行的限制意味着同一个班级在一个考场最多只能安排6个学生(因为不能同行同列)
  3. 对于人数最多的班级(51人),需要分散到至少9个考场才能满足不同行同列的要求
  4. 每个考场42个座位需要从10个班级中选择学生,且要保证不同行同列

实现算法来解决问题:

import numpy as np
from collections import defaultdict

class ExamRoom:
    def __init__(self, rows=7, cols=6):
        self.rows = rows
        self.cols = cols
        self.seats = np.zeros((rows, cols), dtype=int)  # 0表示空座位
        self.class_counts = defaultdict(int)  # 统计每个班级在该考场的人数
        
    def can_place_student(self, row, col, class_id):
        # 检查同一行是否有相同班级的学生
        if class_id in self.seats[row]:
            return False
            
        # 检查同一列是否有相同班级的学生
        if class_id in self.seats[:, col]:
            return False
            
        return True
        
    def place_student(self, row, col, class_id):
        self.seats[row, col] = class_id
        self.class_counts[class_id] += 1
        
    def is_full(self):
        return np.all(self.seats != 0)

class ExamSeatingSystem:
    def __init__(self, num_rooms=12, class_sizes=None):
        if class_sizes is None:
            class_sizes = [50, 50, 50, 50, 51, 51, 51, 51, 50, 50]
        self.num_rooms = num_rooms
        self.class_sizes = class_sizes
        self.rooms = [ExamRoom() for _ in range(num_rooms)]
        self.remaining_students = defaultdict(int)
        for i, size in enumerate(class_sizes, 1):
            self.remaining_students[i] = size
            
    def arrange_seating(self):
        # 使用贪婪算法尝试安排座位
        for room_idx in range(self.num_rooms):
            room = self.rooms[room_idx]
            for row in range(room.rows):
                for col in range(room.cols):
                    # 找到最适合放在当前位置的班级
                    best_class = self.find_best_class_for_position(room, row, col)
                    if best_class is None:
                        return False  # 无法完成安排
                    room.place_student(row, col, best_class)
                    self.remaining_students[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

X_taiyang18

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值