tensorflow gpu版安装(直接anaconda虚拟环境中配置cuda,无需主机安装cuda、cudnn)

一、背景

cuda可以直接装到电脑上,但是安装步骤复杂,且失败率较高。选择anaconda虚拟环境安装,操作简单,且可以结合pytorch、tensorflow等深度学习框架的不同版本,安装不同的版本的cuda,各个虚拟环境互不干扰,也可以一键删除。

二、tensorflow-gpu安装教程

anaconda安装配置十分简单可自行查找教程,包括环境变量和镜像源配置。
打开cmd命令行(anaconda已放到环境变量)或者Anaconda PowershellPrompt(如下图):
在这里插入图片描述
输入nvidia-smi
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/f46b19e9828a383c420fcc7a2d5cf015.png在这里插入图片描述
如图,CUDA Version后面的就是电脑显卡可支持的cuda版本,所以我们要装的cuda版本需要<=12.6(可向下兼容)。如果输入nvidia-smi,表示命令不存在,则说明电脑没有安装显卡驱动,显卡驱动安装可参考如何在windows上 安装&更新 显卡的驱动

1、首先我们需要查找anaconda官方所提供cudatoolkit(这就是cuda在anaconda中的名称)的版本有哪些

输入如下命令:

conda search cudatoolkit --info

在这里插入图片描述
根据结果,我们可以知道有11.8、11.3、11.0等版本

2、根据tensorflow版本决定python、cuda、cudnn的版本

点击跳转—>查询tensorflow版本和python、cuda、cudnn的版本的对应关系
在这里插入图片描述
如图我这里选择标红的版本,因为其cuda11.0正符合上一步我们所查到的cudatoolkit=11.0,对于cuda11.2的版本,我不确定上述查到的cudatoolkit的11.3或11.8版本是否可行也就是否可向下兼容,读者可以自行尝试。

3、创建anaconda虚拟环境

输入 conda create -n test python=3.8

‘’test‘’为虚拟环境名词,可以自动定义。这里用python3.8。
在这里插入图片描述

输入y回车,等到运行完毕。输入conda env list,我们可以看到虚拟环境tese已创建完毕,环境名称后面是所在的路径,便于在pycharm等IDE中导入。(pycharm导入anaconda创建的虚拟环境的教程,可以在我的主页找到。)

在这里插入图片描述

环境创建好后,需要进入虚拟环境,输入conda activate test回车:
在这里插入图片描述

可以看到环境由base变为test,表示已经进入test虚拟环境。下一步就是安装cuda和cudnn。

4、cuda、cudnn安装

(一定要进入虚拟环境!!!),输入conda search cudatoolkit --info,查看cudatoolkit已有的安装包版本号。这里与上面的2.1类似,用来确定版本号
在这里插入图片描述

我们安装11.0.221,安装命令为conda install cudatoolkit=11.0.221(这里用conda命令安装),回车,运行成功之后,再安装cudnn,直接使用conda install cudnn回车。这样我们的cuda环境就配置完毕了。

5、tensorflow-gpu安装

输入pip install tensorflow-gpu==2.4.0,回车,确定安装,等待一会,如果不报错则安装成功。
在这里插入图片描述

6、验证tensorflow-gpu是否安装成功

在虚拟环境下,输入python,进入python命令行,
先导入torch库,import tensorflow as tf,再输入tf.test.is_gpu_available()
在这里插入图片描述

如图返回True,则证明tensorflow-gpu安装成功了!!!!!!

pytorch-gpu安装可以参考我的另一篇文章----->cuda环境配置(anaconda虚拟环境版,含pytorch-gpu安装)

在Windows 10系统上配置TensorFlow GPU本涉及多个步骤,首先需要安装Anaconda来创建和管理Python环境。然后,需要下载并安装TensorFlow GPU本相兼容的CUDACuDNN本。最后,设置环境变量以确保TensorFlow能够识别GPU硬件和相应的CUDA工具包。具体步骤如下: 参考资源链接:[Win10 Anaconda安装Tensorflow CPU/GPU详细指南](https://wenku.csdn.net/doc/64681922543f844488b8af70?spm=1055.2569.3001.10343) 1. 安装Anaconda:下载并安装Anaconda的Python 3.5本,这是TensorFlow GPU支持的最低Python本。 2. 创建conda环境:在Anaconda命令行中,创建一个新的环境并指定Python本为3.5。例如,创建一个名为tensorflow-gpu的环境,可以使用以下命令: ```bash conda create -n tensorflow-gpu python=3.5 ``` 3. 激活conda环境:通过以下命令激活之前创建的环境: ```bash activate tensorflow-gpu ``` 4. 安装TensorFlow GPU:在激活的环境中,使用pip安装TensorFlow GPU本: ```bash pip install --ignore-installed --upgrade tensorflow-gpu ``` 5. 安装CUDA Toolkit:访问NVIDIA官方网站下载与你的TensorFlow本兼容的CUDA Toolkit本。例如,对于TensorFlow 1.13.1,推荐CUDA 10.0本。 6. 安装cuDNN:同样地,下载与CUDA Toolkit本兼容的cuDNN,并按照NVIDIA官方指导进行安装。 7. 设置环境变量:需要将CUDAcuDNN安装路径添加到系统的PATH环境变量中。此外,还需要将CUDA的libnvvp路径添加到系统的LIBRARY_PATH环境变量中。 - 打开系统属性,点击环境变量。 - 在系统变量中找到并编辑Path变量,添加CUDA的bin和libnvvp路径。 - 同样地,添加CUDA的include路径到系统变量中。 8. 验证GPU安装:运行TensorFlow代码,检查是否能正确加载GPU设备。例如: ```python import tensorflow as tf print(tf.test.gpu_device_name()) # 应显示可用的GPU设备 from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) # 列出所有本地设备,包括GPU设备 ``` 通过上述步骤,你应该能够在Windows 10系统上成功配置TensorFlow GPU本。对于更多细节和问题解决方案,可以参考这篇教程:《Win10 Anaconda安装Tensorflow CPU/GPU详细指南》,它提供了丰富的信息和实用的建议,帮助用户高效完成安装配置过程。 参考资源链接:[Win10 Anaconda安装Tensorflow CPU/GPU详细指南](https://wenku.csdn.net/doc/64681922543f844488b8af70?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值