AI大模型环境—Vanna安装分享(text-2-sql)

Vanna 简介

Vanna 是一个基于 MIT 许可的开源 Python RAG(检索增强生成)框架,用于 SQL 生成和相关功能。它允许用户在数据上训练一个 RAG “模型”,然后提问问题,这将生成在数据库上运行的 SQL 查询语句,并将查询结果通过表格和图表的方式展示给用户。

安装环境

CentOS 7.X

1.安装 anaconda3 

wget https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh

sh Anaconda3-2024.02-1-Linux-x86_64.sh

source ./anaconda3/bin/activate

2.更新pip

pip install --upgrade pip

>Successfully installed pip-24.0

3.安装模块包

pip install pandas -i Simple Index

pip install openai -i Simple Index

pip install pymysql -i Simple Index

pip install 'vanna[chromadb,openai]' -i Simple Index

4. 通过conda环境启动jupyter(pyhton开发环境),命令行执行

jupyter-lab

或者

jupyter notebook --allow-root

5. 申请Vanna的api_key

打开网址Log in to Vanna.AI,输入邮箱,获取Vanna.AI for free Key,示例如下:

from vanna.remote import VannaDefault
vn = VannaDefault(model='vanna-dxs', api_key='57d72396****')

6. 运行python模型

##初始化 Vanna 对象
from vanna.remote import VannaDefault
vn = VannaDefault(model='data', api_key='d6647*****')


##连接数据库
import pandas as pd
import pymysql
# MySQL数据库连接参数
conn_details = {
"host": "192.168.1.56",
"port": 13306,
"user": "root",
"password": "123@123",
"database": "vanna",
"charset": "utf8mb4",
}
 
# 建立MySQL数据库连接
conn = pymysql.connect(**conn_details)
 
 
# 定义一个函数,用于执行SQL查询并返回一个Pandas DataFrame
def run_sql(sql: str) -> pd.DataFrame:
    df = pd.read_sql_query(sql, conn)
    return df
 
# 将函数设置到vn.run_sql中
vn.run_sql = run_sql
vn.run_sql_is_set = True


##训练数据
vn.train(ddl="""
CREATE TABLE IF NOT EXISTS users (
    id INT PRIMARY KEY COMMENT '用户ID',
    username VARCHAR(50) COMMENT '用户名',
    email VARCHAR(100) COMMENT '电子邮件',
    age INT COMMENT '年龄',
    gender VARCHAR(10) COMMENT '性别(男/女)',
    city VARCHAR(50) COMMENT '城市'
) COMMENT='用户信息表' CHARACTER SET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
""")


##插入示例数据
INSERT INTO users (id,username,email,age,gender,city) VALUES
(1,'张三','zhangsan@example.com',30,'男','北京'),
(2,'李四','lisi@example.com', 25,'女','上海'),
(3,'王五','wangwu@example.com',40,'男','广州'),
(4,'赵六','zhaoliu@example.com',35,'女','深圳'),
(5,'小明','xiaoming@example.com',28,'男','成都'),
(6,'小红','xiaohong@example.com',45,'女','重庆'),
(7,'小华','xiaohua@example.com',32,'男','天津'),
(8,'小丽','xiaoli@example.com',27,'女','南京'),
(9,'小李','xiaoli2@example.com',38,'男','武汉'),
(10,'小美','xiaomei@example.com',33,'女','西安');


7. 打开web访问界面 

from vanna.flask import VannaFlaskApp
VannaFlaskApp(vn).run()
返回如下:
Your app is running at:
http://localhost:8084
 * Serving Flask app 'vanna.flask'
 * Debug mode: off

8. 打开Vanna界面

其它安装参考:

安装Vanna模块

[yangwx@localhost bin]$ ./pip install vanna

Collecting vanna

  Downloading vanna-0.0.33-py3-none-any.whl.metadata (8.8 kB)

Requirement already satisfied: requests in /opt/anaconda3/lib/python3.7/site-packages (from vanna) (2.19.1)

......

Installing collected packages: kaleido, tenacity, tabulate, sqlparse, plotly, vanna

Successfully installed kaleido-0.2.1 plotly-5.18.0 sqlparse-0.4.4 tabulate-0.9.0 tenacity-8.2.3 vanna-0.0.33

更新安装pandas

[yangwx@localhost bin]$ ./pip install --upgrade pandas

Requirement already satisfied: pandas in /opt/anaconda3/lib/python3.7/site-packages (0.23.4)

Collecting pandas

  Downloading pandas-1.1.5-cp37-cp37m-manylinux1_x86_64.whl.metadata (4.7 kB)

Successfully installed numpy-1.21.6 pandas-1.1.5

安装openAI

./pip install openai

>>openai-0.8.0

安装chromadb

./pip install chromadb   --ignore-installed

Downloading filelock-3.12.2-py3-none-any.whl (10 kB)

Using cached fsspec-2023.1.0-py3-none-any.whl (143 kB)

Installing collected packages: pypika, mpmath, monotonic, flatbuffers, zipp, websockets, uvloop, urllib3, typing-extensions, tqdm, sympy, sniffio, six, pyyaml, python-dotenv, protobuf, packaging, overrides, numpy, idna, humanfriendly, httptools, grpcio, graphlib-backport, fsspec, filelock, exceptiongroup, charset-normalizer, certifi, bcrypt, backoff, requests, python-dateutil, pydantic-core, pulsar-client, importlib-resources, importlib-metadata, h11, coloredlogs, chroma-hnswlib, anyio, annotated-types, watchfiles, starlette, pydantic, posthog, onnxruntime, huggingface_hub, click, uvicorn, typer, tokenizers, fastapi, chromadb


开放页面IP访问配置:

修改配置文件,让界面通过IP访问

先执行如下命令,重新生成配置文件

jupyter notebook  --generate-config

将c.NotebookApp.ip =localhost修改为c.NotebookApp.ip = '*'

 vim /home/yangwx/.jupyter/jupyter_notebook_config.py

参考链接:

https://pypi.org/project/vanna/

Vanna AI集成到Spring Boot项目中通常需要几个步骤: 1. **添加依赖**: 首先,你需要在项目的`pom.xml`文件中添加Vanna AI的依赖。如果你是在Maven项目里,可以添加像下面这样的条目: ```xml <dependency> <groupId>com.vannadata</groupId> <artifactId>vanna-core</artifactId> <version>latest-version</version> </dependency> ``` 确保替换`latest-version`为Vanna AI库的最新版本。 2. **配置环境**: Vanna AI可能需要一些特定的环境配置,比如API密钥。你可以在`application.properties`或`application.yml`文件中设置这些配置项。 3. **创建服务类**: 创建一个Spring Bean来管理Vanna AI的实例,例如: ```java @Service public class VannaAiService { private final VannaCore vannaCore; @Autowired public VannaAiService(VannaCore vannaCore) { this.vannaCore = vannaCore; } // 添加你所需的方法,如调用Vanna API进行处理 public Response processRequest(Request request) { return vannaCore.process(request); } } ``` 4. **编写客户端代码**: 在你的业务层,你可以通过注入这个服务类来使用Vanna AI的功能。例如,在控制器方法中: ```java @RestController public class YourController { private final VannaAiService vannaAiService; @Autowired public YourController(VannaAiService vannaAiService) { this.vannaAiService = vannaAiService; } @PostMapping("/vanna-process") public ResponseEntity<Response> processVanna() { Request request = ...; // 构造请求对象 Response response = vannaAiService.processRequest(request); return new ResponseEntity<>(response, HttpStatus.OK); } } ``` 5. **启动应用**: 最后,运行Spring Boot应用,Vanna AI就集成好了,并可通过API端点访问其功能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值