torch.optim.SGD和torch.optim.lr_scheduler.StepLR

本文介绍了torch.optim.SGD优化器的参数,包括学习率(lr)、冲量(momentum)和权重衰减(weight_decay),以及冲量如何影响模型训练。同时,讨论了StepLR学习率调度器的功能,它按照预设步长(step_size)降低学习率(gamma倍)以帮助优化过程。
摘要由CSDN通过智能技术生成
  •  torch.optim.SGD
optimizer = torch.optim.SGD(params, lr=0.00001,
                            momentum=0.9, weight_decay=0.0005)

参数:

1. lr:学习率。学习率较小时,收敛到极值的速度较慢。学习率较大时,容易在搜索过程中发生震荡。  简单的梯度下降法:param=param-lr*\Delta param\Delta param:是对param的一阶导数。

2. momentum:冲量,可以使用累积效应。普通的梯度下降法仅仅只是使用当前对参数的导数,没有考虑到之前训练的情况。当使用冲量时,每次参数的更新从-lr*\Delta param变成-lr*\Delta param+v*momentum,其中v为上一次的更新值。momentum值介于[0, 1]。

这样的效果就是:

- 当本次梯度下降-lr*\Delta param的方向与上次更新量v的方向相同时,上次的更新量能够对本次的搜索起到一个正向加速的作用。
- 当本次梯度下降-lr*\Delta param的方向与上次更新量v的方向相反时,上次的更新量能够对本次的搜索起到一个减速的作用。

3. weight_decay:权重衰减,即L2正则化前面的\lambda参数, 权重衰减的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。

E(w)^{'}=E(w)+\lambda w

  • torch.optim.lr_scheduler.StepLR
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                               step_size=10,
                                               gamma=0.1)

 1.功能:实现对lr的更新,每过step_size个epoch更新lr,lr为原来的gamma倍大小

参考链接:(31条消息) python torch.optim.SGD_Florence_Janie的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值