安全模型
Feserving
- 先写论文中有多少个实体,如图所示。
- 然后分别写这些实体拥有什么东西,能够利用这些东西干嘛,起到什么作用,使用什么东西,获得什么服务。
- 讲了系统模型的工作流是怎么样的。根据图片,解释每个流程
pvCNN
- 点出系统涉及的实体
- 各个实体在现实中可能是什么实体,有什么动机,会做什么事情
- 根据图示然后描述这些实体之间的工作流
Deepchain
解释每个在Deepchain中使用的概念和术语,然后再讲每个流程,这里有涉及了一些符号,比如模型参数 W W W、交易 T x P j i Tx^i_{P_j} TxPji等符号
golden Chain
- 这里写了几个实体,每个实体在干嘛,并且有什么交互。
- 接着这里提到公平性的保证很有挑战性,这里提到为什么有挑战性
- 然后提到如何解决这个公平性问题
privacy-preserving and byzantine robust federated learning
- 这里只涉及了两个实体
- 对参与者进行说明,有N个参与者,共同训练模型,上传模型,每一次迭代收到自己份额的模型,然后重构,替换自己的本地模型,然后训练,训练结束之后,把更新的份额发送给三个服务器
- 三个服务器执行隐私保护全局模型聚合,接收到本地参数之后,根据协议进行聚合,聚合之后将更新的模型发送给每个参与者
威胁模型
Deepchain
写出每个威胁,然后再写security goal
- 威胁:上传模型参数,有可能泄露隐私;安全目标:那么就协同解密,然后有份额
- 威胁:恶意参与者可能生成错误的梯度,干扰训练进程,获得错误的结果。解密的时候可能给出有问题的份额,然后提前终止训练,有可能延迟交易或者终止契约;安全目标:对梯度的搜集和参数更新进行审计;假设恶意客户端的数量,然后有正确性证明,确认是不是正确加密了梯度;进行公平性保证,通过交易惩罚和超时检查
Golden Chain
讲每个角色的可能是恶意还是可信的。为什么是这样子(从角色所处环境来说,可能收到控制,攻击)假如是作恶,指出作恶的动机(为什么这么做,可以获取什么利益)
FederalServing
对每个角色进行分析
- 预测提供商:不会一起合谋,理智自私,最大化利益,输入的数据是好的
- TEE:安全的,保证了机密性和完整性
- 区块链:可信,可能遭受女巫攻击(女巫攻击大概做了什么事情)
pvCNN
- 模型开发商:不可信,有可能做什么恶,对测试数据好奇,不考虑什么后门攻击
- 服务提供商:有很强的计算能力,不相信他们,他们可能会窃取信息,不正确运行,可能会作恶。
- 模型测试者:数据需要被保护,但是标签公开
- 公共平台和未来使用者:诚实,然后传输通过安全的信道
privacy-preserving and byzantine robust federated learning
- 参与者恶意的数量,有可能会实现什么攻击,恶意的参与者的目标是什么,恶意参与者可能每一轮都会在所有样本上进行攻击,每个攻击的方式是什么
- 服务器:静态诚实大多数,最多一个恶意,有可能偏离协议,然后推断额外的信息;
总结:在什么环境中,可能做什么恶,会不会勾结,有可能实现什么攻击,作恶的目标是什么,这个攻击具体是怎么实现的,好奇信息,然后什么攻击不被考虑,信道是安全的
具体设计
pvCNN
先写总的概述,综述,大概是怎么设计的,然后再分小节具体写怎么设计
- 概述:先写我们希望的零知识证明是怎么样的,需要达到什么要求,有两个需要满足的带你,然后如何对零知识证明进行优化(减少乘法门的数量和压缩多个证明)。然后接下来介绍零知识证明生成的线路图,也就是如何生成零知识证明(有一个图描述这个过程)。然后总结我们的工作量主要在两个地方;
- (接着前面的内容细化)如何优化卷积关系:先写传统方法的计算复杂度太高,指出其不可行性,然后提出将卷积运算转化为单个矩阵乘法,降低复杂度,说明如何将QMP表达矩阵乘法,说明该方法适用于全连接层。
- 如何生成整个零知识证明,要证明什么东西,定义证明的关系,如何生成证明,如何连接起来。
- 解释如何降低存储和验证成本,将多个测试者的证明聚合为单一证明
Fedserving
- 写出预测准确性受限制的两个原因,举一个例子引出场景,聚焦于聚合问题;要支持三种预测格式,因此文章要统一格式,给出算法,对算法进行解释,然后对损失函数的选择;
- pricing机制的设计
2.1 先点出为什么要这样子做,过滤不准确的预测,不能保证聚合结果准确,因此引出博弈论
2.2 模型设定,根据博弈论定义参与者、策略、效用,用户模型等
2.3 提出这个策略的设计目标
2.4 将问题建模成优化问题,引入求解方法
GoldChain
引入要写具体的细节,包括什么部分,但是那个更重要
- Benching Stage
1.1 为什么需要:抛出问题,什么是交换公平性,为什么重要,如何确保模型评估者真实,如何保护模型隐私,最后提出解决方案。(为什么,要解决什么问题,如何解决)
1.2 写总体的流程(可视化),然后提出挑战,如何确保提交的模型是一致的、如何认证样本,减少负担,如何确保没有被攻击影响
1.3 简洁描述卖家注册过程,对术语进行定义,展开细节,如何操作将相信信息记录在区块链上展开
1.4 简述需要评估模型性能,定义指标,然后说明数据集,具体指标计算,如何交互
1.5 引入协议以及目标,写用什么技术,能提供什么作用,具体怎么操作
1.6 回顾之前的问题,然后如何解决这个问题
privacy-preserving and byzantine robust federated learning
先写Overview,然后导出接下来要用的top-K协议,再写总体的流程,最后细化这两个重要的协议
BSR-FL
先写总的训练流程,然后把训练流程分为4个小部分,每个小部分进行细化,分成一个小节。