- 博客(139)
- 问答 (1)
- 收藏
- 关注
原创 嵌入式软件时间分析开发技巧技术报告
本报告深入阐述了嵌入式软件开发过程中的时间分析方法和技术要点。报告详细介绍了时间需求的分类与识别、软件开发过程中的时间分析技巧、调度设计和优化方法,以及时间验证和监测的最佳实践。通过分析汽车电子控制单元的实际案例,展示了系统化时间分析方法在提高嵌入式软件可靠性和性能方面的重要价值。该报告为刚开始接触时间分析领域的嵌入式开发人员提供了实用的技术指导和开发优化建议。本报告基于《时间分析-开发过程中的开发技巧》文档,系统阐述了嵌入式软件开发过程中的时间分析方法。
2025-12-07 21:58:13
46
原创 【安全启动】HSM安全启动原理与技术实现白皮书
摘要: 安全启动(Secure Boot)与度量启动(Measured Boot)通过硬件信任根(HSM/TPM等)确保系统启动链路的可信性,实现代码验证与状态记录。HSM作为核心组件,承担密钥保护、签名验证和密码运算任务,与SHE、TPM等协同构建分层信任链。通用计算与嵌入式/汽车场景的启动流程差异显著,前者依赖TPM的PCR度量,后者以HSM为核心实现硬件级安全闭环。工程实践中需权衡性能、合规性及抗攻击能力,并结合后量子密码(PQC)等演进技术优化方案。
2025-11-22 22:39:31
567
原创 【安全启动】HSM安全启动系统学习指南
HSM安全启动系统学习指南摘要 本指南为工程师提供关于HSM安全启动的系统性学习路径,以英飞凌AURIX TC377芯片为核心案例,涵盖基础理论、芯片实现、开发实践和行业应用四个阶段。安全启动作为设备信任链的起点,在汽车电子和工业控制领域尤为重要。指南详细解析了TC377的HSM架构、UCB/PROCON配置、密钥管理等关键技术,并提供了从开发到认证的全流程指导。特别关注汽车行业合规要求(如ISO/SAE 21434、UN R155),帮助开发者构建安全可靠的启动系统,规避常见工程陷阱。通过四阶段渐进学习,
2025-11-22 21:43:47
297
原创 RAGFlow 模块分析参考
本文档分析了RAGFlow项目的核心模块架构。主要包含三大模块:1)核心RAG逻辑模块(rag),负责检索增强生成流程,包含问答机器人、简历解析等应用逻辑;2)文档理解模块(deepdoc),提供PDF/Office文档等多种格式的解析功能;3)智能体模块(agent),支持构建复杂工作流。此外还包含API接口、前端Web、配置管理等辅助模块,构成完整的RAG应用开发框架。各模块分工明确,通过标准化接口协同工作,支持多种文档处理和智能交互场景。
2025-11-21 20:00:43
99
原创 RAGFlow 快速上手与开发部署全指南(含 Windows/WSL2 配置)
RAGFlow是一个开源的检索增强生成(RAG)引擎,专为深度文档理解设计。项目采用Docker部署方式,要求系统配置为4核CPU、16GB内存和50GB硬盘。快速启动只需克隆仓库后运行docker-compose命令即可访问服务。开发环境搭建需要安装Python和前端依赖,配置基础服务后分别启动前后端。关键配置文件包括.env环境变量、服务配置和容器编排文件。项目结合大语言模型与复杂数据源,提供高效的文档检索与生成功能。
2025-11-21 19:55:44
95
原创 AURIX™ TC3xx基于以太网的OTA研究与实现
本文介绍了OTA(空中下载)技术的实现方式及其在英飞凌AURIX™ TC3xx系列MCU中的应用。文章分析了三种常见OTA方案(内置协议栈、APP暂存更新、AB分区)的优缺点,并重点推荐结合TC3xx特有的AB SWAP功能实现最优SOTA方案。TC3xx通过虚拟地址映射技术,解决了传统AB分区方案需重复编译的问题,同时详细说明了TC387的Flash地址映射关系、SOTA功能配置流程及注意事项。该方案充分利用TC3xx大容量Flash优势,在保证安全性的同时实现高效可靠的固件更新。
2025-11-20 22:35:31
219
原创 【AURIX Tricore】TC3XX内存映射分析(2)
TC3XX内存映射分析摘要 TC3XX系列微控制器采用统一的4GB地址空间,划分为16个256MB段(Segment)进行管理。关键特性包括: 程序闪存(PFlash)采用双映射策略:Segment 8(0x8...)支持缓存访问,Segment 10(0xA...)为直接访问区 数据闪存(DFlash)用于EEPROM模拟,包含关键的UCB配置块 SRAM架构包含私有(PSRAM/DSRAM)和共享内存(LMU/DAM) 外设寄存器集中映射在Segment 15(0xF...) 支持硬件安全模块(HSM)
2025-11-20 21:59:41
486
原创 RAGFlow使用常见问题和处理办法
RAGFlow常见问题处理指南摘要 本报告系统梳理了RAGFlow(v0.22.0)使用过程中的典型问题及解决方案,主要涵盖安装部署、配置集成、功能使用和性能优化四大类问题。报告发现: 安装部署:macOS ARM架构需本地构建镜像;GPU版本需显式配置.env参数,且加速范围已收敛至DeepDoc任务;网络问题建议配置国内镜像源 配置集成:大规模知识库切换嵌入模型时需调整Elasticsearch的max_result_window参数;数据库兼容性问题可临时回退版本解决 性能优化:提供全链路参数调优方案
2025-11-18 19:33:31
271
原创 打通AI“最后一公里”:MCP与gRPC的协同之道
AI连接外部世界的密钥:MCP与gRPC协同之道 随着AI技术的快速发展,大型语言模型(LLM)面临两大核心挑战:有限的上下文窗口和训练数据时效性。为解决这些问题,模型上下文协议(MCP)和gRPC技术应运而生。MCP作为AI原生协议,提供自然语言描述的工具、资源和提示,使AI能直接理解和使用外部服务;而gRPC凭借其高性能优势,适用于高吞吐量的实际调用场景。未来趋势显示,二者将协同工作:MCP作为"前门"负责智能发现,gRPC作为"引擎"处理高效执行。这种协同架构将
2025-10-18 23:12:05
52
原创 AI开发者必备!三大MCP服务器,让你的AI应用“智商爆表”
它就像是AI应用的“USB-C接口”,为你的大语言模型提供强大的上下文信息,让AI更聪明、更实用、更强大!- ✅ 快速搜索AWS各项服务的官方文档 - ✅ 直接在CLI中返回详细的文档内容 - ✅ 可以将文档保存为Markdown文件 - ✅ 让Amazon Q CLI帮助解读和解释文档。- ✅ 创建代码仓库(Repos) - ✅ 创建问题(Issues) - ✅ 创建拉取请求(Pull Requests) - ✅ 搜索你的代码仓库 - ✅。赶快去实验这些MCP服务器吧,相信你一定会发现更多惊喜的玩法!
2025-10-18 22:52:45
61
原创 MCP vs. API:AI智能体如何更轻松地连接外部世界?
本文对比了传统API与新兴的ModelContextProtocol(MCP)在AI智能体数据集成中的应用。传统API虽功能强大但缺乏标准化,每个服务需单独编码集成;而MCP作为专为AI设计的协议,通过标准化接口、动态发现和上下文管理,显著简化了AI智能体与外部数据源的交互。MCP采用客户端-服务器架构,提供动态发现、工具执行和上下文管理三大核心能力,使AI应用能统一访问各类系统资源。尽管MCP优势明显,传统API在简单数据获取和现有系统兼容场景仍有价值。随着AI发展,MCP有望成为AI集成的标准协议,推动
2025-10-16 19:07:52
98
原创 栈内存数据残留导致信息泄露的技术机制与安全防护研究
栈内存数据残留导致信息泄露的安全风险分析 摘要 栈内存数据残留是计算机系统中广泛存在但常被忽视的安全隐患。该问题源于程序调用结束后仅通过栈指针回退"逻辑释放"内存,而未物理清除存储的敏感数据(如密钥、密码等)。这些残留数据可被后续函数调用无意访问,导致严重的信息泄露。 研究发现: 该问题主要影响C/C++等低级语言开发的系统软件和应用 漏洞利用门槛低但危害大,可绕过KASLR等高级防护机制 包括Linux内核和OpenSSL在内的多个知名软件曾因此类漏洞被攻击 实验验证通过专门设计的C程
2025-09-30 19:09:16
166
原创 C语言变量使用的常见问题与现代最佳实践:从基础到高级的完整指南
C语言变量使用指南摘要 本文系统探讨了C语言变量管理的核心问题与现代最佳实践。主要内容包括: 基础问题分析:强调变量声明时应遵循就近原则,在声明时立即初始化,最小化作用域,并合理使用存储类别(auto/static/register/extern)。 现代C23标准特性:介绍了自动类型推断(auto)、类型查询(typeof)等新特性,以及位宽精确整数(_BitInt)的用法。 嵌入式系统优化:提出针对内存受限环境的优化策略,包括使用位域、联合体和内存池技术。 性能优化:讨论了缓存友好访问、寄存器变量等优化
2025-09-30 14:20:56
61
原创 Agent AI: Surveying the Horizons of Multimodal Interaction 论文精读笔记
针对 RQ1(多模态感知和行动)(来源:第3-4节)Agent AI通过Agent Transformer模型实现视觉、语言和行动Token的统一处理多模态感知显著提升了Agent在复杂环境中的理解和响应能力状态-行动对的学习模式为Agent提供了更自然的交互方式针对 RQ2(大型基础模型增强)(来源:第2.2节和第4.1节)LLMs/VLMs在任务规划和推理中展现出强大能力,能将自然语言指令分解为可执行的子任务通过外部记忆增强和推理增强技术,有效缓解了基础模型的幻觉问题。
2025-09-21 20:45:23
154
原创 汽车软件工程师必读:AUTOSAR堆栈配置与安全防护实战指南
摘要: 本报告深入探讨AUTOSAR OS中的堆栈管理技术,重点分析堆栈概念、空间分配策略及安全机制。报告指出,在汽车电子等实时嵌入式系统中,堆栈管理直接影响系统稳定性和资源利用率。通过对比抢占式与非抢占式调度的堆栈使用特点,提出静态与动态相结合的堆栈深度计算方法,并详细介绍配置参数、溢出检测技术(哨兵值、MPU硬件保护)及工具链支持。以ETAS RTA-OS和Infineon TC3XX为例,强调安全裕量、运行时监控和故障处理机制的必要性,为汽车软件工程师提供了一套系统化的堆栈管理实践方案。(149字)
2025-08-07 17:20:45
210
原创 Infineon AURIX TriCore TC3xx芯片内存专题报告
本报告深入分析了Infineon AURIX TriCore TC3xx系列微控制器的内存架构。TC3xx作为第二代AURIX™微控制器,在性能、内存和安全方面均有显著提升,最高支持16MB PFlash和7MB SRAM。报告详细阐述了其内存组织结构(本地内存LMU与全局内存PMU)、多核访问机制、层次化架构及地址空间分配,并重点解析了Flash存储器特性、EEPROM仿真技术和SRAM分类(DSPR/PSPR/LMU)。TC3xx通过硬件级安全机制和三级内存层次设计,为汽车电子应用提供了高性能、高可靠性
2025-06-28 17:12:13
419
原创 基于CAN总线重编程协议栈设计
本文详细介绍了基于CAN总线的汽车重编程协议栈设计,重点解析了ISO 15765-2标准及其实现方法。文章首先展示了协议栈的层次架构,从物理层到应用层完整结构。随后深入剖析了CAN-TP协议的四种关键数据单元格式:单帧(SF)、首帧(FF)、连续帧(CF)和流控帧(FC),包括它们的数据结构定义和应用场景。最后阐述了CAN-TP状态机的设计原理,定义了几种核心状态和运行时数据结构。这些内容为汽车软件工程师提供了实现高效可靠CAN重编程系统的关键技术参考,涵盖从底层协议到上层应用的全套设计方法。
2025-06-19 15:39:10
115
原创 汽车电子Bootloader核心原理与TC377芯片架构解析
本文解析了汽车电子Bootloader的核心原理与TC377芯片架构设计。首先阐述了Bootloader在AutoSAR体系中的双重角色:作为系统引导者和软件更新代理,并介绍了其精简AutoSAR集成的设计策略。随后深入分析了TC377芯片的TriCore架构优势,包括RISC处理器、微控制器和DSP功能的融合特性,以及其多核系统架构设计。重点剖析了TC377多核启动序列中Bootloader的协调机制,通过代码示例展示了主核心CPU0的初始化流程。文章为汽车电子开发人员提供了Bootloader设计与TC
2025-06-19 14:50:36
546
原创 ChromaDB深度技术研究报告
ChromaDB是一个开源的AI原生向量数据库,专为存储和检索高维向量嵌入而设计。其核心功能包括语义搜索、相似度匹配和检索增强生成(RAG),为LLM应用提供外部知识库支持。采用HNSW算法实现高效的近似最近邻搜索,支持多种运行模式(内存、持久化、客户端-服务器)。ChromaDB简化了AI应用开发流程,内置Sentence-Transformers模型,同时支持OpenAI、HuggingFace等第三方嵌入集成。典型应用场景包括语义搜索、推荐系统和LLM知识增强。API设计简洁,只需4个核心接口即可完成
2025-06-18 22:25:45
148
原创 ChromaDB完全指南:从核心原理到RAG实战
摘要:本文深入解析了开源向量数据库ChromaDB的核心原理与应用实践。作为AI时代的"外部记忆体",ChromaDB通过嵌入技术将数据转换为高维向量,结合HNSW算法实现高效语义搜索。文章详细介绍了其技术架构,并提供了三个实战案例:基础知识库构建、OpenAI模型集成与复杂过滤、RAG应用实现。ChromaDB以其易用性和强大语义能力,成为中小型AI项目的理想选择。文中所有代码示例均经过验证,帮助开发者快速掌握这一关键技术,为构建智能应用提供可靠的知识存储与检索方案。
2025-06-18 19:41:13
362
原创 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
纯强化学习可行性验证成功实现完全基于RL的训练范式(无需SFT),DeepSeek-R1-Zero在数学推理任务(AIME)准确率达71.0%,接近SFT+RL混合方法(73.2%)。知识蒸馏有效性Qwen-32B蒸馏版在代码生成任务(LiveCodeBench)性能提升15.3%,证明大模型推理能力可迁移至小模型。训练效率突破GRPO算法相比传统PPO节省40%训练资源,分布式架构支持单次训练完成多阶段优化。
2025-02-12 17:22:21
334
1
原创 【提示工程】:如何有效与大语言模型互动
提示工程是指通过设计和优化输入提示(Prompts),以引导语言模型完成特定任务或生成高质量输出的过程。提示词是用户与模型交互的桥梁,直接影响模型的输出结果。一个好的提示词不仅能提高模型的准确性,还能显著提升任务完成的效率。例如,当我们向模型输入提示词 “The sky is” 时,模型可能会输出 “blue.”。尽管这一结果符合常识,但它可能无法满足更复杂的需求。
2025-02-07 22:20:44
350
原创 【提示词工程】探索大语言模型的参数设置:优化提示词交互的技巧
是一组字符串,用于告诉模型在生成特定字符序列时停止输出。如果希望生成一个最多包含 10 项的列表,可以将 “11” 设置为 stop sequence。如果希望模型在生成特定标点符号(如句号)后停止,也可以定义相应的 stop sequence。这种方式为控制响应长度和结构提供了额外灵活性,尤其适合需要严格格式化输出的任务。大语言模型的参数设置是优化提示词交互效果的重要环节。
2025-02-07 22:11:23
628
原创 【deepseek】本地部署DeepSeek R1模型:使用Ollama打造个人AI助手
DeepSeek R1是一个强大的开源语言模型,通过Ollama可以轻松实现本地部署。本文将详细介绍如何在本地部署和使用DeepSeek R1模型,并结合Page Assist插件实现更便捷的AI交互体验。通过Ollama部署DeepSeek R1模型,结合Page Assist插件,您可以搭建一个功能强大的本地AI助手系统。这不仅可以保护您的隐私,还能提供更快速的响应体验。根据您的硬件配置选择合适的模型版本,就能享受到高质量的AI服务。希望本教程能帮助您成功部署和使用DeepSeek R1模型。
2025-01-29 23:05:39
9993
原创 【提示词工程】ChatGPT辅助代码审查与调试的最佳实践
ChatGPT作为代码审查和调试的辅助工具,能够显著提高开发效率和代码质量。但需要注意的是,ChatGPT的建议仍需要开发者的专业判断和验证,它是开发工具链中的补充,而非替代品。在软件开发过程中,代码审查和调试是保证代码质量的关键环节。随着人工智能技术的发展,ChatGPT作为一个强大的AI助手,可以显著提升代码审查和调试的效率。本文将详细介绍如何利用ChatGPT进行高效的代码审查和调试工作。通过合理运用ChatGPT进行代码审查和调试,我们可以构建更高质量、更安全、更高效的软件系统。
2025-01-20 15:48:43
244
原创 提示词工程:解锁AI潜能的关键技术
提示词工程(PromptEngineering)是一门新兴的技术领域,专注于如何设计和优化与生成式人工智能的交互提示,以获得最佳的输出结果。它是连接人类意图和AI能力的桥梁,通过精心设计的文本输入来引导AI模型产生准确、相关且有价值的输出。提示词工程是AI时代的必备技能,它不仅能帮助我们更好地利用AI工具,还能提升工作效率和创造力。在接下来的系列文章中,我们将深入探讨各种提示词技术,并通过实际案例来展示它们的应用。
2025-01-19 13:27:26
163
原创 【DLT消息发送】DLT通过CAN发送的Trigger Transmit机制分析
这种机制特别适合需要实时性和数据最新性的应用场景,比如DLT日志传输等用例。
2025-01-03 09:15:25
189
原创 【嵌入式软件开发】嵌入式软件计时逻辑的两种实现:累加与递减的深入对比
本文主要从四个方面详细阐述了嵌入式软件编程中计时逻辑的两种实现方式:累加和递减。
2025-01-01 22:21:05
201
原创 【Infineon AURIX】AURIX缓存(CACHE)变量访问指南
调试器只能读取真实内存。无法获取缓存中的最新值。禁用ENDINIT保护。配置CPU_DCON0。调试显示错误的变量值。:启用缓存监视器执行。
2024-12-30 23:23:18
573
原创 【OTA】论文笔记--《智能网联汽车整车OTA功能设计研究》智能网联汽车OTA系统设计分析报告
降低车辆召回成本实现车辆软件和数据的统一管理提高售后服务效率和质量提供车载娱乐系统增值服务通过快速更新迭代优化驾驶辅助功能。
2024-12-30 23:00:42
800
原创 【OTA】论文学习笔记--《基于RTOS的车载ECU双分区OTA升级技术分析报告》
汽车智能化、网联化发展趋势下,OTA升级已成为智能网联汽车的必备功能- 传统RTOS控制器在OTA升级失败后无法进行软件回滚,导致控制器功能失效- 现有技术主要针对Linux、QNX等智能操作系统,缺乏针对RTOS的解决方案提出一种适用于RTOS控制器的双分区升级技术,解决以下问题:- OTA升级失败后的软件回滚- 确保升级过程的可靠性- 实现不同硬件平台的兼容性。
2024-12-30 22:38:17
583
原创 【学习笔记】检测基于RTOS的设计中的堆栈溢出-第2部分
本文讨论了在嵌入式系统中**检测和防止任务堆栈溢出**的问题。堆栈溢出可能导致程序异常行为,甚至引发系统崩溃,因此有效的检测和防护机制至关重要。作者介绍了多种技术,包括硬件和软件方法,详细阐述了每种技术的原理、实现方式以及优缺点。
2024-12-01 22:26:44
322
原创 【学习笔记】基于RTOS的设计中的堆栈溢出(Stack Overflow)-第1部分
基于RTOS的应用程序中的每个任务都需要自己的堆栈,堆栈的大小取决于任务的要求(例如,函数调用嵌套、传递给函数的参数、局部变量等)。为了避免堆栈溢出,开发人员需要过度分配堆栈空间,但不要太多,以避免浪费RAM。
2024-12-01 22:17:46
513
1
原创 【AUTOSAR OS】OS COUNTER 操作系统计时器
AUTOSAR OS计数器作为实时系统性能的关键组件,在现代汽车电子系统中扮演着不可或缺的角色。通过本文的深入探讨,我们可以得出以下结论:核心功能:计数器为AUTOSAR OS提供了精确的时间管理和任务调度能力,是实现实时性能的基础。灵活性:AUTOSAR OS支持多种类型的计数器,包括硬件和软件计数器,能够适应不同的应用场景和性能需求。系统性能影响:合理配置和优化计数器可以显著提升系统的实时性能、资源利用效率和可靠性。
2024-08-17 00:20:08
496
1
原创 【论文解读】《Biasing Effects in Schedulability Measures》
该文件讨论了可调度性度量中的偏差效应,特别是在速率单调(RM)调度算法的背景下。主要观点和关键论点如下:通常通过生成大量合成任务集并计算通过测试的任务集占可行任务集的比例来评估可调度性测试的性能。然而,得到的比率取决于用于评估的指标和生成随机任务参数的方法。本文讨论并比较了三种不同的指标来评估可调度性测试的性能:分解利用率、利用率上界和一种称为最优度(OD)的新指标。本文研究了随机生成过程如何偏向特定调度算法(如RM)的仿真结果。
2024-08-14 22:38:29
273
原创 【AUTOSR OS】OsTaskTimingProtection--OsTaskAllInterruptLockBudget 参数详解
OsTaskAllInterruptLockBudget通常指的是一个任务在执行期间可以保持中断锁定的最大时间。这个预算的设置是为了防止任务在执行时被过多的中断打断,从而导致系统的实时性下降。通过合理配置这个预算,可以确保关键任务在执行时不会被其他低优先级的任务或中断打断。作用:1. 提高实时性:通过限制中断的干扰,OsTaskAllInterruptLockBudget可以确保高优先级任务在关键时刻能够获得足够的CPU时间。
2024-08-14 21:45:49
363
原创 【llama3.1】ollama的使用--本地部署使用llama3.1模型
安装完成ollama后,在命令行窗口输入上图表示 Ollama 正在下载llama3任务所需的资源文件,并显示了当前的下载进度、速度和预计剩余时间。这是 Ollama 在准备运行llama3任务之前所需的步骤。
2024-07-24 23:18:28
1411
原创 【llama3.1】Ollama 下载安装指南
以上就是在 Windows 系统上下载和安装 Ollama 的详细步骤。希望这篇指南能帮助你顺利安装并开始使用 Ollama。如果你在安装过程中遇到任何问题,欢迎在评论区留言,我们会尽快帮助你解决。
2024-07-24 22:57:24
12187
原创 【问题处理】DOIP 0x19服务超时问题的分析与解决
通过修改PDU长度配置,我们成功解决了19 0A服务请求反馈超时的问题。但是实际上排查问题花了大半天时间,整个过程包括问题分析、配置修改、代码生成、验证测试等步骤。获得的经验与教训,包括:在涉及到诊断的配置时,要仔细评估需求。像PDU长度这样的配置,并不是客户直接告诉你的,而需要工程师具有丰富的开发经验,才能知道该配置多少。这需要通过对诊断服务需求的理解和对系统能力的评估来决定。希望本文的经验分享能对其他工程师在处理类似问题时有所帮助。
2024-06-28 18:45:48
520
原创 【模型参数微调】最先进的参数高效微调 (PEFT) 方法
由于大型预训练模型的规模,微调大型预训练模型的成本通常高得令人望而却步。参数高效微调 (PEFT) 方法只需微调少量(额外)模型参数而不是所有模型参数,即可使大型预训练模型有效地适应各种下游应用。这大大降低了计算和存储成本。最近最先进的PEFT技术实现了与完全微调的模型相当的性能。PEFT 与 Transformers 集成,可轻松进行模型训练和推理,与 Diffusers 集成,方便地管理不同的适配器,与 Accelerate 集成,用于大型模型的分布式训练和推理。查看 PEFT 适配器 API 参考部分
2024-06-02 21:51:11
649
4
《Biasing Effects in Schedulability Measures》Enrico Bini,Giorgio
2024-08-14
大模型+通意千问+开源+技术资料
2023-09-26
C编写的AES ECB, CTR CBC加密算法源码
2023-02-06
英飞凌,TC377,CAN控制器
2023-03-30
CANOE CAPL语言编程打开一个错误提示对话框
2023-02-13
Python对xml文件进行修改报错UnicodeDecodeError
2022-08-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅