数据挖掘:决策树、信息熵和信息增益

本文探讨了决策树的构建过程,包括Hunt算法、节点划分策略、属性测试条件选择以及衡量标准如基尼指数和信息熵。讨论了如何确定最佳分割点,以及如何使用基尼指数和熵计算信息增益。同时,文章还指出信息增益的缺点,并引入了增益率作为改进措施。此外,提到了分类错误作为另一种衡量不纯度的方法,以及防止过拟合的预剪枝和后剪枝策略。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值