题目
【约瑟夫环】
这 n 个数字排成一个圆圈,从数字 0 开始,每次从这个圆圈里删除第 m 个数字。求出这个圆圈里剩下的最后一个数字。
例如,0,1,2,3,4 这 5 个数字组成一个圆圈,从数字 0 开始每次删除第 3 个数字,则删除的前 4 个数字依次是2,0,4,1,因此最后剩下的数字是 3。
数学方法推导
解决约瑟夫环问题,我们采用倒推,我们倒推出:最后剩下的这个数字,在最开始的数组中的位置。
剩下最后一个数字(简称“它”)的时候,总个数为 1
,它的下标pos = 0
。
那么它在上一轮也是安全的,总个数为 2
,它的下标 (0+m)%2
;
(解释:在上一轮中,它前面的数字(即红色的数字,下标为
m-1
)被移走了;因此它的下标是m
;由于是环,因此需要%2
)
那么它在上上轮也是安全的,总个数为3
,它的下标 ((0+m)%2+m)%3
;
那么它在上上上轮也是安全的,总个数为4
,它的下标 (((0+m)%2+m)%3+m)%4
;
…
那么它在游戏开始的第一轮也是安全的,总个数为n
,它的下标 pos就是所求。
即如果从下向上反推的时候:假如它下一轮的下标为pos
,那么当前轮次的下标就是:(pos+m)%当前轮次的人数
。
最后,由于给出的数字是nums = 0,1,2,…,n-1,即nums[i] = i,因此找出下标 [公式] 就相当于找到这个数字。
解决约瑟夫环的代码
#include<iostream>
#include<list>
using namespace std;
int main(){
int m,n;
cin >> n >> m;
int idx = 0;
for(int i = 2; i <= n; ++i){
idx = (idx + m)% i;
}
cout << idx + 1 << endl;
return 0;
}
该数学方法的进阶应用
【报数游戏】100个人围成一圈,每个人有一个编码,编号从1开始到100。他们从1开始依次报数,报到为M的人自动退出圈圈,然后下一个人接着从1开始报数, 直到剩余的人数小于M。请问最后剩余的人在原先的编号为多少?
#include<iostream>
#include<vector>
using namespace std;
int main(){
int m;
cin >> m;
vector<int> cap(m - 1,0);
for(int i = 0; i < m - 1;++i){
cap[i] = i;
}
for(int i = m; i <= 100; ++i){
for(int j = 0; j < m - 1; ++j){
cap[j] = (cap[j] + m) % i;
}
}
for(int i = 0; i < m - 1; ++i){
cout << cap[i] + 1 << endl;
}
return 0;
}