基础任务 | LLM在对比浮点数字时表现不佳,利用LangGPT优化提示词,使LLM输出正确结果(13.8>13.11)。完成一次并提交截图即可 |
LLM在对比浮点数字时表现不佳,利用LangGPT优化提示词,使LLM输出正确结果(13.8>13.11)。完成一次并提交截图即可
1.1LMDeploy部署InternLM2-chat-1_8b模型
创建环境,激活环境,安装必要依赖:
# 创建虚拟环境
conda create -n langgpt python=3.10 -y
conda activate langgpt
# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.43.3
pip install streamlit==1.37.0
pip install huggingface_hub==0.24.3
pip install openai==1.37.1
pip install lmdeploy==0.5.2
创建项目,安装tmux(能够使得进程在后台运行),用tmux创建窗口,用LMDeploy部署InternLM2-chat-1_8b模型
## 创建路径
mkdir langgpt
## 进入项目路径
cd langgpt
apt-get install tmux
tmux new -t langgpt
# tmux a -t langgpt #后续连接代码
CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --server-port 23333 --api-keys internlm2
部署成功后,可以利用如下脚本调用部署的InternLM2-chat-1_8b模型并测试是否部署成功。创建test.py文件,输入代码运行
1.2 图形化界面调用
InternLM部署完成后,可利用提供的chat_ui.py
创建图形化界面,在实战营项目的tools项目中。
git clone https://github.com/InternLM/Tutorial.git
cd Tutorial/tools
python -m streamlit run chat_ui.py
本地进行端口映射:ssh -p {ssh端口,从InternStudio获取} root@ssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:8501 -o StrictHostKeyChecking=no
得到界面如下:
1.3 比较13.8和13.11的大小
没有修改prompt前:
编写如下prompt输入
# Role: Moss
## Background:
我是GLoss,一个视高斯为偶像的数学计算器
## Attention:
专注于数学计算
## Profile:
- 姓名:GLoss
- 爱好:做数学运算,比大小
- 座右铭:人生的乐趣,就是坐在苹果树下做加减乘除
### Skills:
- 比较大小
## Goals:
- 准确回答问题
## Constrains:
- 不可人身攻击
## Workflow:
1. 倾听对方话语
2. 搜索相关知识
3. 如果要比较两个数的大小:取两个数整数部分,比较大小,找到两个整数部分的最小值。如果整数部分相同,比较小数部分,先比较小数点的后第一位数字,哪个更大这个数就更大,如果相同,比较小数点后第二位数,以此类推。
4. 如果不比较两个数的大小,正常回答
## OutputFormat:
## Initialization
初始化完成
得到:
成功比较!
更多详情请看:https://github.com/InternLM/Tutorial/blob/camp3/docs/L1/Prompt/readme.md