Chapter 8 中医证型关联规则挖掘

目录

一、背景和目标

二、方法步骤

三、过程

3.1 数据获取

3.2 数据预处理

3.3 模型构建

四、模型应用


一、背景和目标

  • 借助患者的病理信息,挖掘患者的症状于中医证型之间的关联关系。
  • 对截断治疗提供依据,挖掘潜性证素。

二、方法步骤

  1. 问卷调查,收集整理数据。
  2. 对数据进行预处理,包括数据清洗、属性规约、数据变换,形成建模数据。
  3. 对预处理后的建模数据,采用“关联规则算法”,调整模型输入参数,获取各中医证素于乳腺癌TNM分期之间的关系。
  4. 结合实际业务,对模型结果进行分析,且将模型结果应用到实际业务中,最后输出关联规则结果。

三、过程

3.1 数据获取

  1. 拟定调查问卷并形成原始指标表。
  2. 定义纳入标准与排除标准。
  3. 将收集回来的问卷整理成原始数据。

 

3.2 数据预处理

3.21 数据清洗

根据“问卷有效性条件”(纳入标准、排除标准)筛选后,将有效问卷整理成原始数据。

3.22 属性规约

为了更为有效地进行挖掘,将冗余属性和与挖掘无关的属性删除。最后选择其中6种证型得分TNM分期的属性值构成数据集。

3.23 数据变换

(1)属性构造

为了更好的反映证素分布的特征,采用证型系数代替具体的单证型得分。

公式:证型系数=该证型得分/该证型总分

处理后数据形式如下:

(2)数据离散化

因为Apriori关联规则算法无法处理连续型数值变量,为了将原始数据格式转换成合适的建模格式,需要对数据进行离散化。这里采用聚类算法对各个证型系数进行离散化处理,将每个属性聚成4类。

#-*- coding: utf-8 -*-
'''
聚类离散化,最后的result的格式为:
      1           2           3           4
A     0    0.178698    0.257724    0.351843
An  240  356.000000  281.000000   53.000000
即(0, 0.178698]有240个,(0.178698, 0.257724]有356个,依此类推。
'''
from __future__ import print_function
import pandas as pd
from sklearn.cluster import KMeans #导入K均值聚类算法

datafile = '.../data/data.xls' #待聚类的数据文件
processedfile = '.../tmp/data_processed.xls' #数据处理后文件
typelabel ={u'肝气郁结证型系数':'A', u'热毒蕴结证型系数':'B', u'冲任失调证型系数':'C', u'气血两虚证型系数':'D', u'脾胃虚弱证型系数':'E', u'肝肾阴虚证型系数':'F'}
k = 4 #需要进行的聚类类别数

#读取数据并进行聚类分析
data = pd.read_excel(datafile) #读取数据
keys = list(typelabel.keys())
result = pd.DataFrame()

if __name__ == '__main__': #判断是否主窗口运行,如果是将代码保存为.py后运行,则需要这句,如果直接复制到命令窗口运行,则不需要这句。
  for i in range(len(keys)):
    #调用k-means算法,进行聚类离散化
    print(u'正在进行“%s”的聚类...' % keys[i])
    kmodel = KMeans(n_clusters = k, n_jobs = 4) #n_jobs是并行数,一般等于CPU数较好
    kmodel.fit(data[[keys[i]]].as_matrix()) #训练模型
    
    r1 = pd.DataFrame(kmodel.cluster_centers_, columns = [typelabel[keys[i]]]) #聚类中心
    r2 = pd.Series(kmodel.labels_).value_counts() #分类统计
    r2 = pd.DataFrame(r2, columns = [typelabel[keys[i]]+'n']) #转为DataFrame,记录各个类别的数目
    r = pd.concat([r1, r2], axis = 1).sort_values(typelabel[keys[i]]) #匹配聚类中心和类别数目
    r.index = [1, 2, 3, 4]
    
    r[typelabel[keys[i]]] = r[typelabel[keys[i]]].rolling(2).mean() #df.rolling(2).mean()用来计算相邻2列的均值,以此作为边界点。
    r[typelabel[keys[i]]][1] = 0.0 #这两句代码将原来的聚类中心改为边界点。
    result = result.append(r.T)

  result = result.sort_index() #以Index排序,即以A,B,C,D,E,F顺序排
  result.to_excel(processedfile)

分类临界值情况:

离散化后的数据格式如下:

 

3.3 模型构建

3.31 关联规则模型

(1)Python的流行库中都没有自带关联规则函数,因此编写如下Apriori关联规则的函数(该函数依赖于Pandas库)。

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd

#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
  x = list(map(lambda i:sorted(i.split(ms)), x))
  l = len(x[0])
  r = []
  for i in range(len(x)):
    for j in range(i,len(x)):
      if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
        r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
  return r

#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
  result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
  
  support_series = 1.0*d.sum()/len(d) #支持度序列
  column = list(support_series[support_series > support].index) #初步根据支持度筛选
  k = 0
  
  while len(column) > 1:
    k = k+1
    print(u'\n正在进行第%s次搜索...' %k)
    column = connect_string(column, ms)
    print(u'数目:%s...' %len(column))
    sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
    
    #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
    d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
    
    support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
    column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
    support_series = support_series.append(support_series_2)
    column2 = []
    
    for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
      i = i.split(ms)
      for j in range(len(i)):
        column2.append(i[:j]+i[j+1:]+i[j:j+1])
    
    cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
 
    for i in column2: #计算置信度序列
      cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
    
    for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
      result[i] = 0.0
      result[i]['confidence'] = cofidence_series[i]
      result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
  
  result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
  print(u'\n结果为:')
  print(result)
  
  return result

 (2)Apriori关联规则建模

目标是探索乳腺癌患者TNM分期与中医证型系数之间的关系,这里采用关联规则算法,挖掘他们之间的关系。

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd
from apriori import * #导入自行编写的apriori函数
import time #导入时间库用来计算用时

inputfile = '.../data/apriori.txt' #输入事务集文件
data = pd.read_csv(inputfile, header=None, dtype = object)

start = time.clock() #计时开始
print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(b).fillna(0) #实现矩阵转换,空值用0填充
end = time.clock() #计时结束
print(u'\n转换完毕,用时:%0.2f秒' %(end-start))
del b #删除中间变量b,节省内存

support = 0.06 #最小支持度
confidence = 0.75 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符

start = time.clock() #计时开始
print(u'\n开始搜索关联规则...')
find_rule(data, support, confidence, ms)
end = time.clock() #计时结束
print(u'\n搜索完成,用时:%0.2f秒' %(end-start))

(3)运行结果

转换原始数据至0-1矩阵...
__main__:6: DeprecationWarning: time.clock has been deprecated in Python 3.3 and will be removed from Python 3.8: use time.perf_counter or time.process_time instead
__main__:14: DeprecationWarning: time.clock has been deprecated in Python 3.3 and will be removed from Python 3.8: use time.perf_counter or time.process_time instead

转换完毕,用时:0.77秒

开始搜索关联规则...

正在进行第1次搜索...
数目:276...

正在进行第2次搜索...
数目:947...

正在进行第3次搜索...
数目:41...

结果为:
                    support  confidence
A3---F4---H4       0.078495    0.879518
C3---F4---H4       0.075269    0.875000
B2---F4---H4       0.062366    0.794521
C2---E3---D2       0.092473    0.754386
D2---F3---H4---A2  0.062366    0.753247

搜索完成,用时:3.06秒
__main__:17: DeprecationWarning: time.clock has been deprecated in Python 3.3 and will be removed from Python 3.8: use time.perf_counter or time.process_time instead

 

3.32 模型分析

根据上述运行结果,得到5个关联规则,

  1. A3, F4 => H4    
  2. C3, F4 => H4     
  3. B2, F4 => H4     
  4. C2, E3 => D2
  5. D2, F3, H4 => A2

但并非所有关联规则都有意义,我们只关注以为H为关联规则结果的规则(上述结果中的3个)。

得到如下结论:

  1. A3, F4 => H4,支持度7.85%,置信度87.96%,说明当 证型系数 出现A3, F4的情况时,TNM分期诊断为H4的可能性是87.96%,而这种情况在数据中出现的概率是7.85%。
  2. C3, F4 => H4 ,支持度7.53%,置信度87.5%,说明当 证型系数 出现C3, F4的情况时,TNM分期诊断为H4的可能性是87.5%,而这种情况在数据中出现的概率是7.53%。
  3. B2, F4 => H4,支持度6.24%,置信度79.45%,说明当 证型系数 出现A3, F4的情况时,TNM分期诊断为H4的可能性是79.45%,而这种情况在数据中出现的概率是6.24%。

四、模型应用

模型结果表明,TNM分期为H4的乳腺癌患者的证型主要为肝肾阴虚证、热毒蕴结证、肝气郁结证、冲任失调证。其中肝肾阴虚证和肝气郁结证的临床表现较为突出,其置信度达到87.96%,且肝肾阴虚证临床表现都存在。故当H4期患者表现出肝肾阴虚证时,应当滋补肝肾,阶段热毒蕴结证的出现,同时患者多有肝气郁结证的表现时,应当及时疏导患者抑郁、焦虑的不良情绪。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值